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Abstract 

Light Detection and Ranging (LiDAR) has demonstrated potential for forest inventory at 

the individual tree-level. The aim in this study was to predict individual tree height (Ht; m), basal 

area (BA; m
2
) and stem volume (V; m

3
) attributes using Random Forest k- nearest neighbor (RF 

k-NN) imputation and individual tree-level based metrics extracted from a LiDAR-derived 

canopy height model (CHM) in a longleaf pine (Pinus palustris Mill.) forest in southwestern 

Georgia, USA. We developed a new framework for modeling tree-level forest attributes that was 

comprised of three steps: (1) individual tree detection, crown delineation and tree-level based 

metrics computation from LiDAR-derived CHM; (2) automatic matching of LiDAR-derived 

trees and field-based trees for a regression modeling step using a novel algorithm; and (3) RF k-

NN imputation modeling for estimating tree-level Ht, BA, and V, and subsequent summarization 

of these metrics at the plot- and stand-levels. RMSDs for tree-level Ht, BA and V were 2.96%, 

58.62% and 8.19%, respectively. Although BA estimation accuracy was poor because of the 

longleaf pine growth habit, individual tree locations, Ht, and V were estimated with high 

accuracy, especially in low canopy cover conditions. Future efforts based on the findings could 

help to improve the estimation accuracy of individual tree-level attributes like BA. 

Résumé 

Le lidar a démontré son potentiel pour l'inventaire forestier à l’échelle de l’arbre. Le but 

de cette étude était de prédire la hauteur individuelle des arbres (Ht; m), la surface terrière (BA; 

m
2
) et le volume des tiges (V; m

3
) en utilisant une imputation basée sur la méthode des forêts 

aléatoires et des k plus proches voisins (RF k-NN; Random Forest k-nearest neighbor) et de 

mesures à l’échelle de l’arbre extraites à partir d'un modèle de la hauteur de la canopée (MHC) 
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dérivés du lidar dans une forêt de pins des marais (Pinus palustris Mill.) dans le sud-ouest de la 

Géorgie, aux États-Unis. Nous avons développé un nouveau cadre pour la modélisation des 

attributs forestiers à l’échelle de l'arbre composé de trois étapes : 1. la détection des arbres 

individuels, la délimitation des couronnes et le calcul de paramètres à l’échelle de l'arbre à partir 

de modèles MHC obtenus à partir du lidar; 2. la mise en correspondance automatique entre les 

arbres obtenus à partir du lidar et les arbres observés sur le terrain pour une étape de 

modélisation de régression en utilisant un nouvel algorithme; et 3. l'imputation par modélisation 

en utilisant RF k-NN pour estimer la Ht, la BA et le V à l’échelle de l'arbre et la synthèse 

ultérieure de ces mesures à l’échelle de la parcelle et du peuplement. Les REQM pour la Ht, la 

BA et le V à l’échelle de l'arbre étaient de 2,96 %, 58,62 % et 8,19 %, respectivement. Bien que 

la précision de l'estimation de la BA fût faible en raison du port et du mode de croissance des 

pins des marais, l’emplacement des arbres individuels, la Ht et le V ont été estimés avec une 

grande précision, en particulier dans des conditions de faible couverture de la canopée. Les 

efforts futurs basés sur ces résultats pourraient aider à améliorer la précision de l'estimation des 

attributs à l’échelle de l’arbre comme la BA. 
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Introduction 

Longleaf pine (Pinus palustris Mill.) was once one of the most ecologically important 

tree species in the Southern United States (Oswalt et al., 2012). Historically, longleaf pine forests 

spanned an estimated area of 92 million acres (Frost 2006) and were among the most extensive 

ecosystems in North America (Landers et al. 1995). Today, only four percent of these longleaf 

pine forests remain (Franklin 2008). 

Fire is one of the dominant forces that shapes the longleaf pine landscape (Dobbs 2011). 

Longleaf pine is dependent on fire for successful regeneration and for suppressing hardwood 

growth (Loudermilk et al., 2011). However, due to fire suppression, much of the remaining 

longleaf pine forest is in poor or degraded condition. As a result, there has been tremendous 

interest in longleaf pine conservation, management and restoration (Brockway, 2005). 

Successful management of these forests can have sustainable results, as longleaf pines 

can produce quality wood products when grown in a variety of densities (Franklin 2008). 

Accurate measures of forest attributes like tree density (tree/ha), and attributes such as height 

(Ht), basal area (BA), and stem volume (V) that are used at the tree-, plot- and stand-levels, are 

essential to management and conservation practices in longleaf pine forests. The most accurate 

method of estimating these attributes is to physically sample them in the field. However, 

individual tree field measurements over large areas are limited by budgets and time, making 

them impractical. 

Airborne Light Detection and Ranging (LiDAR) systems have become the dominant 

remote sensing technique for plot- and stand-level forest inventory, mainly due to the fact that 
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this technology can quickly provide highly accurate and spatially detailed information about 

forest attributes across entire forested landscapes (Silva et al. 2014). Increased interest, dataset 

availability, and technological improvements have greatly expanded the use of LiDAR 

technologies in forestry over the past decade (Saremi et al. 2014, Hudak et al. 2014, Hansen et al. 

2015). 

The use of airborne LiDAR to retrieve forest attributes at the tree-level is promising, 

however not as widely studied as plot- or stand-level approaches. In a tree-level based modeling 

approach, individual tree attributes are usually predicted through three steps: (1) individual tree 

detection and metrics extraction, (2) LiDAR- and field-based tree matching and (3) modeling and 

prediction. The accurate prediction of tree-level attributes is highly dependent on the methods 

used to detect and extract individual tree metrics and forest structure as well (Kankare et al. 

2015). 

A LiDAR-derived Canopy Height Model (CHM) can be used for detecting individual 

trees, delineating tree crowns, and subsequently estimating biophysical attributes such as 

biomass and stem volume (Popescu et al. 2003, Popescu, 2007, Falkowski et al. 2008, 2009, 

Vauhkonen et al. 2012, Hu et al. 2014, Duncanson et al. 2014, 2015, Kankare et al. 2015). There 

are a variety of approaches used to detect and delineate individual trees from LiDAR-derived 

CHMs. These include identifying local maxima (Popescu et al. 2003, Weinacker et al. 2004, 

Falkowski et al. 2008, 2009) for tree detection, as well as region-growing (Hyyppä et al. 2001, 

Solberg et al. 2006, Pang et al. 2008), valley-following (Leckie et al. 2003) and watershed (Chen 

et al. 2006, Jing et al. 2012) for delineation. 
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In addition to the individual tree detection method and forest structure, the accurate 

prediction of forest attributes at the tree level is also highly dependent on the modeling technique 

applied (Vauhkonen et al. 2010). Examples of the existing methods for modeling forest attributes 

at the tree-level from LiDAR data are both parametric (Chen et al., 2007) and non-parametric 

(Breidenbach et al. 2010, Vauhkonen et al. 2010, Vauhkonen et al. 2012). Saarinen et al. (2014), 

Vastaranta et al. (2014) and Kankare et al. (2015) have been recently tested k-nearest neighbor 

(k-NN) imputation for forest inventory modeling at the tree-level. In most cases however, k-NN 

imputation, as a nonparametric method, has commonly been used to predict forest inventory 

attributes at the plot- or stand-levels (Falkowski et al., 2010, Hudak et al., 2014, Racine et al., 

2014). For example, Hudak et al. (2008) evaluated nine k-NN imputation methods and LiDAR 

data for imputing plot-level BA and tree density (TD) of 11 conifer species occurring in mixed-

conifer forests of north-central Idaho, USA. Racine et al. (2014) used LiDAR data and k-NN 

imputation to estimate plot age across a managed boreal forest in Quebec, Canada, while Fekety 

et al. (2015) used repeated field and LiDAR survey data to assess the feasibility of predicting 

forest inventory attributes across space and time in a conifer forest in Northern Idaho, USA. 

The aforementioned studies integrated LiDAR and field data in an area based k-NN 

imputation to predict forest attributes at the plot- or stand-levels. However, accurate 

characterization of the forest at the individual tree-level not only enhances conventional and 

LiDAR area-based forest inventory, but also extends its applications in disciplines where greater 

detail is valued, such as ecology, wildlife habitat or biodiversity applications (Goetz et al., 2007, 

Hinsley et al., 2002, Vierling et al., 2008). 
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Given that only a fraction of the historic longleaf pine forest ecosystem range remains 

today, accurate characterization and spatial distribution of individual trees are critical for 

sustainable forest management and for ecological and environmental protection in longleaf pine 

forests. Our goal in this study was to predict individual tree-level attributes using k-NN 

imputation and individual tree LiDAR-based metrics in a longleaf pine forest in southwestern 

Georgia, USA. Our first aim therefore was to evaluate the ability of LiDAR to accurately detect 

individual trees and determine treetop height (HMAX, m) and crown area (CA, m
2
) that are 

subsequently used for predicting tree attributes. Our second aim was to predict individual tree Ht 

(m), BA (m
2
) and V (m

3
) attributes from HMAX and CA metrics using k-NN imputation, and 

evaluate its accuracy and precision. This investigation is based on the hypothesis that LiDAR 

technology and k-NN imputation modeling approach can feasibly provide precise and accurate 

estimates of these tree attributes in the open canopy structure that is typical of healthy longleaf 

pine forests. 

Material and methods 

Study area 

The study area for this project is located at Ichauway, an 11,700 ha reserve of the Joseph 

W. Jones Ecological Research Center in southwestern Georgia, USA (Figure 1). The area is 

characterized by a humid subtropical climate (Christensen 1981) with a mean annual 

precipitation of 131 cm fairly evenly spread throughout the year. Mean daily temperatures range 

from 21◦C to 34◦C in the summer and 5◦C to 17◦C in the winter (Loudermilk et al., 2011). 

Elevation ranges from 6.23 to 33.66 m, and the soils are characterized as paleudults, kandiudults 

and hapludults with some localized quartzipsamments (Kirkman et al. 2004). The Ichauway 
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reserve has an extensive tract of second-growth longleaf pine managed with low-intensity, 

dormant-season prescribed fires at a frequency of about 1–3 years since 1945 (Loudermilk et al., 

2011). 

In this study, vegetation structure is characterized by an open canopy longleaf pine forest 

(Figure 1. A, B) and a wiregrass-dominated ground cover maintained under a high frequency fire 

regime (Figure 1. C). Maintaining a high frequency fire regime through repeated application of 

prescribed fire is a top management goal at Ichauway, with occasional individual tree selection 

harvesting for management and research purposes in the natural, second-growth longleaf forests 

(Palik et al. 2003). 

Field Data Collection 

The field measurements were carried out from March to July 2009. A total of 15 

rectangular plots (about 4 ha each) were established in three stands: CNT, NE, and NW (Figure 1 

D). All plots were geo-referenced with a geodetic GPS with differential correction capability 

(Trimble Nomad) with an external Hemisphere Crescent A100 antenna, and had a horizontal 

accuracy of < 0.6 m with differential GPS (DGPS) and < 2.5 m without DGPS in open canopy, 

and 1-2 m accuracy with DGPS under forest canopy. All trees were measured for DBH using 

calipers (two perpendicular measurements at right angles, averaged) or a steel diameter tape, and 

for Ht using a LaserTech Impulse 200. We also geo-located (UTM E, N) them using the GPS 

mentioned above, and from these measures a field stem-map was created. In a few instances 

DGPS was not able to resolve locations of multiple small trees in areas with high stocking, and 

tree locations were recorded by establishing a known DGPS point and then measuring the 

distance (3-5 cm accuracy) and azimuth (± 0.3 degree accuracy) to those trees with the Impulse 
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200 and MapStar Compass module, respectively. The mean longleaf pine tree Ht and DBH 

measured in our study area was 22.95 (±4.88) m and 32.87 (±13.30) cm, respectively, and the 

number of trees per hectare (N/ha) was approximately 147 (±29) trees. A statistical summary of 

the tree density, Ht and DBH field measurements are presented in Error! Reference source not 

found.. 

The outside-bark V was obtained via a longleaf pine allometric equation according to 

Gonzalez-Benecke et al. (2014) (equation 1). The equation has a coefficient of determination 

(R
2
) of 0.78 and absolute and relative RMSE of 0.17 m

3
 and 38.21%, respectively. 

ln(V) = -9.944543 + 3.123691 * ln(Ht) (1) 

In addition to V, tree-level BA was also computed. Statistical summaries of the reference 

BA and V calculations are presented in Table 2. 

LiDAR Data and Pre-processing 

LiDAR data were acquired using an Optech GEMINI Airborne Laser Terrain Mapper 

(ALTM) mounted in a twin-engine Cessna Skymaster (Tail Number N337P). The survey was 

carried out on March 5, 2008. LiDAR flight parameters are presented in Error! Reference 

source not found.. 

LiDAR pre-processing was performed using US Forest Service FUSION/LDV 3.42 software 

(McGaughey 2015) and LAStools (Isenburg 2015). The workflow is graphically shown in Figure 

2A. First, in FUSION/LDV, the quality of the LiDAR data set was visually evaluated, and a 

simple report using Catalog tool was generated. A filtering algorithm based on Kraus and Pfeifer 

(1998) was applied to differentiate between ground and non-ground returns. DTMs were 

generated using the classified ground points with a spatial resolution of 1.0 m using the 
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GridSurfaceCreate function. The CanopyModel tool was then used to interpolate vegetation 

points and to generate DSMs with a spatial resolution of 0.5 m. Afterwards, the ClipData tool 

was applied with the height and dtm switches to normalize heights and to assure that the z 

coordinate for each point corresponded to the height above ground and not the orthometric 

elevation of the single point. The PolyClipData tool was then used to make a subset of the 

LiDAR points within each of the 15 in situ-measured test plots. The CloudMetrics tool with a 

height and cover thresholds of 1.37 m (Nilsson, 1996) were used to compute the canopy cover 

(COV, %), within sample plots. COV was calculated as the number of LiDAR first returns above 

1.37 m, divided by the total number of first returns. Such LiDAR-derived CHM often contain 

height irregularities within individual tree crowns--so-called data pits--which reduce accuracy in 

tree detection and subsequent extraction of biophysical parameters (Gaveau and Hill, 2003, 

Shamsoddini et al. 2013). Therefore, the pit-free algorithm, developed by Khosravipour et al. 

(2014) was used to generate a pit-free CHM at 0.5 m spatial resolution though a workflow 

implemented in LAStools (Isenburg 2015). 

Individual tree detection and HMAX extraction 

Individual tree detection was performed in R (R Development Core Team 2015) using 

the FindTreesCHM function from the rLiDAR package (Silva et al. 2015). The FindTreesCHM 

function uses a local maximum algorithm to search for treetops in the CHM trough a moving 

window with a fixed treetop window size (TWS) (Wulder, et al. 2000). To achieve optimal tree 

detection we tested three TWS (3x3, 5x5, and 7x7) first on an unsmoothed CHM, and then on a 

CHM smoothed by a mean smooth filter with fixed smoothing window size (SWS) of 3x3 and 
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5x5. Even when the smoothed CHM option was used to find trees, the treetop heights (HMAX) 

were extracted from the unsmoothed CHM. 

A total of 15 test subplots (30x30 m) were randomly situated within each of the 15 plots 

(1 subplot per plot), and the number of trees detected (NTD) per subplot from LiDAR were 

manually compared with field-based data and evaluated in terms of true positive (TP, correct 

detection), false negative (FN, omission error) and false positive (FP, commission error). The 

accuracy of the detection was further evaluated for recall (r), precision (p) and F-score (F) 

according to Li et al. (2012), using the following equations (Goutte and Gaussier, 2005, 

Sokolova et al., 2006): 

 

 (2) 

 (3) 

 (4) 

Note that recall is inversely related to omission error and represents the tree detected rate. 

Precision is inversely related to commission error and describes the rate of correct detections. F-

score is used to represent the harmonic mean of recall and precision, which takes both 

commission and omission errors into consideration. Hence, a higher F-score indicates that both 

commission and omission errors are lower (Li et al. 2012). Recall, precision and F-score ranges 

from 0 to 1, and the F-score will become higher with higher p and r values. 
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Individual tree crown delineation and crown area computation 

Tree crown delineation was also performed in R using the ForestCAS function from the 

rLiDAR package (Silva et al. 2015). Inputs to this process were the smoothed CHM in addition 

to the tree location output described in the previous steps. The algorithm implemented in the 

ForestCAS function is shown in Figure 2C and Figure 3, and follows the example presented in 

the figure illustrating three hypothetical trees (Figure 3A). Initially the algorithm starts by 

applying a variable radius crown buffer (Figure 3B) to delimit the initial tree crown area. In this 

study the variable radius was calculated for each tree by multiplying the LiDAR–derived tree 

height by 0.6, because preliminary field observation revealed that the tree crown radius typically 

was not larger than 60% of the LiDAR–derived tree height. After determining the merged tree 

polygon using the first area delimitation (Figure 3 B), we then split the data using the centroidal 

voronoi tessellation approach (Aurenhammer and Klein, 1999) to isolate each individual tree 

polygon (Figure 3 C and D). After isolating each tree polygon, we clipped them from the CHM, 

and excluded the grid cells with values below 30% of the HMAX in each specific detected tree 

(Figure 3 E) to eliminate the low-lying noise. Finally, the tree crown delineation and crown area 

(CA, m
2
) were computed by delimiting the boundary of grid cells belonging to each tree (Figure 

3 F). 

rSTree: Searching for the LiDAR and reference trees 

Forest inventory and modeling of individual trees using field and LiDAR data is a highly 

desirable approach. However, to develop this type of modeling approach, the challenge is to 

match LiDAR-delimited trees with reference trees measured in the field. In many cases, the tree 

location reference measured in the field is inaccurate (often due to GPS error), complicating the 
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individual tree-level modeling approach. Instead of manually moving reference tree locations to 

match with the tree locations detected from LiDAR, we developed a novel approach for 

matching LiDAR and field trees automatically (Figure 4). The proposed rSTree algorithm uses 

the acceptable maximum Euclidian distance (MED) and minimum height difference (MHD) 

computed between LiDAR and field-based data, in terms of tree location and height respectively, 

as the imputed parameters. The algorithm processes a single match tree at a time, and it starts 

with the first detected LiDAR tree. The user defined MED parameter is then used to buffer a 

search area for a possible matching tree. In this study we used 10 m, because given the GPS 

errors we are assuming that the reference tree is within a radius of 10 m. The field-based trees 

located inside of the search area are selected. Trees with height difference (HD) ≤ MHD are then 

selected to the next step as target trees. In this study we used MHD = 1.5 m, because most of the 

literature for conifer LiDAR versus field stems have reported a root mean square error (RMSE) 

in height of ~1-2 m (e.g. Vastaranta et al. 2015). In an open canopy forest such as longleaf pine 

presented herein, we are assuming that the error in LiDAR height would not exceed 1.5 m. If 

more than one reference field-based tree has HD ≤ MHD, the trees are ranked by HD and the tree 

with smallest HD is selected. If two or more field-based trees have a perfect match in terms of 

smallest HD and distance to the detected tree, we randomly selected one as the target field-based 

tree to match with the LiDAR tree. After all interactions, the LiDAR and reference trees are 

combined, added and exported as a table for the individual tree-level attributes modeling 

approach. 
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Imputation modeling development 

In this study, due to the fact that the height-diameter allometry for longleaf pine breaks 

down after reaching a diameter of ~25 cm, when height growth asymptotes at ~25 m (Gonzalez-

Benecke et al. 2014), we believed that a non-parametric modeling technique to predict forest 

attributes at tree-level would be more appropriate than a parametric model. Therefore, k-NN 

imputation, a non-parametric technique, was conducted using the yaImpute (Crookston and 

Finley, 2008) package in the R statistical software (R Core Team 2015). Many imputation 

methods can be used for associating target and reference observations, however recent studies 

have shown that the Random Forest (Breiman 2001) approach generally produces better results 

compared to other imputation methods (Hudak et al. 2008, Nelson et al. 2011, Waske et al. 

2012). For this study we used Random Forest based k-NN (RF k-NN) to characterize the 

relationships between predictor (HMAX and CA) and response (Ht, BA and V) variables used 

for imputation. The number of neighbors was set to one (k=1) to maintain the original variance in 

the data (Hudak et al. 2008). The dataset for the modelling process was randomly split into 

subsets with 75% for training and 25% for testing, and a total of 1000 regression trees were fitted 

in the RF k-NN model. 

Model assessment 

Accuracy of the imputation model was assessed by calculating the absolute and relative 

root mean square distance (RMSD, RMSD%) and bias (BIAS, BIAS%) between imputations and 

observations (Stage and Crookston 2007), computed for a single response variable as follows: 

 (5) 
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 (6) 

where  is the imputed value of a variable,  is the observed value, and n is the number 

of reference observations. The RMSD is analogous to the RMSE used to assess regression model 

accuracy (Stage and Crookston, 2007). The relative RMSD and BIAS are computed by dividing 

absolute RMSD and BIAS by the mean of the variable computed over the reference observations 

and multiplied by 100. We defined acceptable model precision and accuracy as a relative RMSD 

and Bias of ≤ 15% to have a model precision and accuracy less than or equal to the conventional 

forest inventory standard in the longleaf pine. 

We also employed statistical equivalence tests to assess whether the imputed tree 

attributes are statistically similar (i.e., equivalent) to the field-based attributes (Robinson et al. 

2005). According to Smith et al. (2009), statistical equivalence tests are used to test the null 

hypothesis of ―no substantial difference‖ between two sample populations (H0: the sample 

populations are different; H1: the sample populations are equivalent). We employed a 

regression-based equivalence test to test for intercept equality (i.e., the mean of imputed tree 

attribute is equal to the mean of the field-based attribute) and slope equality to 1 (i.e., if the 

pairwise, imputed and observed, attributes are equal, the regression will have a slope of 1). A 

description of equivalence tests can be also found in the ―equivalence‖ package in R (Robinson, 

2015), and examples of equivalence plots in LiDAR studies can be found in Falkowski et al. 

(2008), Smith et al. (2009), Hudak et al. (2012) and Silva et al. (2014).‖ 
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Stand-level imputation of tree attributes 

According to Falkowski et al. (2008), tree detection accuracy decreases with increasing 

COV. An adaptive approach using COV as a constraint to select the best parameters of TWS and 

SWS for tree detection was developed in this study. Therefore, we tiled the normalized point 

cloud using a grid-layer of 200x200m square plots, and for each single tile we computed COV, 

which was calculated by the number of LiDAR first returns above 1.37m, divided by the total 

number of first returns. A buffer of 30 m was applied over each single square layer to remove the 

edge effect of the individual tree detection. As the parameters of the tree detection at stand-level 

was dependent on the results from the test plots, our hypothesis was that small TWS would 

provide better results in close canopy area, and vice-versa. In the buffer overlaid areas, after tree 

detection using the FindTreesCHM function from the rLiDAR package (Silva et al. 2015), one of 

two trees detected was automatically removed to avoid over-detection. Afterwards, tree crown 

delineation was performed across the entire stand using the ForestCAS function from the 

rLiDAR package (Silva et. al, 2015). The RF k-NN imputed model based in the test plots was 

then applied, and the tree attributes Ht, BA and V were estimated for each single tree across all 

stands. 

Results 

Stand-level characterization from field data and LiDAR-based plot metrics 

According to the LiDAR-derived HMAX value, canopy height of the longleaf pine 

forest was similar across the three stands (Figure 5A). LiDAR-derived COV indicated a decrease 

in percent canopy cover from the NW to CNT and NE stands, while COV variance increased 

(Figure 5B). Although the stands were similar in height, they are different in terms of field-
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measured tree density. As observed in the description of the sites in the material and methods 

section, the NW stand had highest tree density and the NE stand had the lowest, while the 

variance in tree density showed the opposite trend in COV (Figure 5C). 

Individual tree detection 

The individual tree detection results from the test plots are shown in Table 4. The TWS 

and SWS combination were sensitive parameters in terms of tree detection. The TWS that 

provides a better result were 5x5 and 7x7, with an tree detection overall improvement of 58.25% 

and 34.59% comparing to the 3x3, respectively. The relationship between SWS and the NTD 

from LiDAR was inversely proportional. Smaller TWSs, such as 3x3, detected more trees as 

compared to large TWSs, such as 7x7, causing an overestimation of NTD. In general, TWS of 

3x3 for the CHM smoothing provided better results. 

Although different combinations of TWS and SWS parameters may provide a better 

performance in each test plot, we identified a positive and strong non-linear relationship between 

the number of reference trees and LiDAR-derived COV (Figure 6A). Therefore, in an effort to be 

consistent and replicable, we decided to use the adaptive approach already cited in the methods 

section, where the COV is used as an auxiliary variable to select the TWS in each test plot. For 

the sample plots with COV >= 70% the 5x5 TWS was selected and in plots with COV < 70% the 

7x7 TWS was selected. Additionally, the 3x3 SWS was selected to be applied across all test 

plots, because it in general provides more accurate results (Table 4. ). 

The relationship between the reference and LiDAR-derived number of trees per test plot 

according to the adaptive approach mentioned above is shown in the Figure 6B. Our method 

slightly underestimates the number of trees, especially in the test plots with COV > 70%. 
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However, the correlation between reference and NTD per hectare (N/ha) is relatively strong, 

displaying a correlation coefficient of 0.90. 

The accuracy assessment results for individual tree detection in the 15 test subplots is 

shown in Table 5. The recall varies from 0.74 to 1, with the overall value of 0.82; the value of p 

varies from 0.71 to 1, with the overall value of 0.85; and the F-score, which considers both of 

these last two factors, varies from 0.74 to 1, with the overall value from all the plots of 0.83. 

There are 185 reference trees in our test subplots, and only 177 (81.6%) trees were detected. In 

summary, the algorithm missed 34 (14.1%) trees, and falsely detected 26 (18.1%) trees, with 

under-detection outweighing over-detection (Table 5 and 6). 

The strongest results were obtained in test subplots with COV < 70%, with 96% of the 

trees detected, commission and omission errors limited to 17.0 and 2% and an F-score of 0.90. 

When considering test subplots with COV > 70%, the algorithm detected 76% of trees with 

commission and omission errors of 13% and 24%, respectively (Table 6). The relationship 

between the F-score and COV is shown in Figure 7. The correlation is relatively strong, with a 

correlation coefficient of 0.91. 

The LiDAR-derived HMAX ranged from 5.24 m to 31.91 m with mean and standard 

deviation (SD) of 24.39 m and 3.18 m, respectively. The LiDAR derived CA ranged from 3.0 m
2
 

to 204.5 m
2
, with mean and SD of 50.2 m

2 
and 24.74 m

2
, respectively. The distributions of 

HMAX and CA are shown in the Figure 8. 
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Imputation modeling estimates at tree level at the test plots 

The rStree algorithm matched 4,242 detected trees to field-based trees (48.0%). From this total, 

3181 (75%) trees were used as training and 1061 (25%) trees were used as testing data for 

imputation modeling. 

The HMAX and CA metrics were better predictors of Ht and V than BA. The imputed 

training model produced a relative RMSD of 2.56%, 57.33% and 7.49%; relative BIAS of 

0.08%, -0.50% and 0.22%, and pseudo-R
2
 of 0.96, 0.22 and 0.95 for the Ht, BA, and V attributes 

respectively. 

The imputed and observed Ht and V attributes from the validation dataset were 

statistically equivalent at the 25% rejection region (Figure 9A and C). On the other hand, the 

imputed and observed BA values were not statistically equivalent at the 25% rejection region 

(Figure 9B). The Ht and V imputation models produced estimates that were strongly (r > 0.97) 

correlated with the validation inventory dataset, whereas the BA imputation model produced 

estimates of BA that were weakly correlated (r = 0.42) with the validation data. The RMSD and 

BIAS values were relatively low, whereas pseudo-R
2
 values were high for the Ht and V. On the 

contrary, the RMSD and BIAS was relatively high, and the pseudo-R
2
 relatively low, for the BA 

estimates. The distributions of imputed and observed forest attributes across all stands from the 

testing dataset are shown in the Figure 10. In general, the similarity between the observed and 

imputed attributes is high. 

Stand-level forest attributes estimates 

The N of trees detected in the stands ranged from 35,980 to 52,184; mean tree Ht ranged 

from 21.10 to 23.17 m; mean tree BA ranged from 0.09 to 0.10 m
2 

and mean tree V ranged from 
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0.79 to 0.96 m
3
, as presented in Table . Mean stand-level BA was 10.73 m

2
/ha (SD = 2.69 m

2
/ha) 

and mean stand-level V was 99.94 m
3
/ha (SD = 26.25 m

3
/ha). We also graphed histograms of 

imputed values for each stand and the shape of these distributions (Figure 11). The distributions 

show that the NW stand is the most mature, the NE stand has the highest proportion of smaller 

trees, and the CNT stand has an intermediate structure. These distributions provide more 

information that is subsumed within the Ht, BA, and V mean and standard deviation trends 

between stands as summarized in Figure 5. 

Discussion 

Individual tree detection 

Accurate individual tree attributes are critical for forest assessment and planning. This 

study presents a simplified framework for automated, LiDAR-based individual tree detection and 

modeling procedure for estimating tree attributes. The results presented herein demonstrate that 

the total number of trees can be derived with satisfactory accuracy. 

We found that the successful identification of tree locations using the local maximum 

technique depends on the careful selection of the TWS. If the TWS is too small or too large, 

errors of commission or, respectively, omission occur as was also reported by Wulder et al. 

(2000). Tree detection accuracy was greatly affected by the different TWS and SWS 

combinations tested (Table 4). TWS was inversely proportional to the number of trees detected 

in general. Since COV is directly proportional to tree density in general, larger TWS is generally 

more appropriate in open canopy forest structures. In this study, 70% COV was the threshold 

chosen as the TWS; this is substantially higher than the 50% threshold reported in previous 

studies (Falkowski et al. 2008) and represents a big advance in our ability to extract individual 
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tree attributes from denser coniferous forest canopies. Even though different combination of 

TWS and SWS would provide high accuracies in certain local areas, a consistent TWS parameter 

is also advantageous for automated tree detection across large spatial extents and therefore we 

employed the COV variable as a criterion for adapting the TWS. 

Smoothing is a common technique applied to LiDAR-derived CHMs for individual tree 

detection purposes. In this study, we tested the mean smoothing filter as a smoother. 

Khosravipour et al. (2014) reported that the performance of individual tree detection was better 

using pit-free CHMs instead of a standard smoothed Gaussian CHM (in a coniferous plantation 

forest in Barcelonnette basin, southern French Alps, France). We observed the same 

improvement, but then further applied the 3x3 SWS over the pit-free CHM to produce even more 

accurate results. Applying the 3x3 SWS the irregular crown shapes that typify longleaf pine tree 

crowns (compared to other conifers, which tend to have a more regular, conical shape), thus 

eliminating spurious local maxima caused, for example, by longleaf pine tree branches that were 

not already removed by the pit-free CHM itself. Filter sizes and the conditions for filtering the 

CHM must be carefully tested and selected for different forest types (Lindberg and Hollaus, 

2012). 

The tree detection results from this study are comparable to the results obtained in other 

studies using both point cloud and raster based approaches. Li et al. (2012) using a new method 

for segmentation individual trees from the LiDAR point cloud in a mixed conifer forest on the 

western slope of central Sierra Nevada Mountains of California, USA, showed that the algorithm 

detected 86% of the trees (―recall‖), and 94% of the trees were segmented correctly 

(―precision‖), with an overall F-score of 0.90. Vega et al. (2014), using the PTrees algorithm to 
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segment individual trees in a conifer plantation in south western France, reported overall recall, 

precision and F-score of 0.93%, 0.98%, and 0.95, respectively. Khosravipour et al. (2014), 

comparing the accuracy of individual tree detection from the LiDAR-derived Gaussian smoothed 

and pit-free CHMs in mixed forest in southern French Alps in France, achieved an overall 

accuracy of 70.6% and 74.2%, respectively, from high-density lidar, and 35.7% and 67.7%, 

respectively, from artificially thinned low-density LiDAR data. Lähivaara et al. (2014), using a 

Bayesian approach to tree detection based on LiDAR data, reported an accuracy of 70.2% for 

2751 trees measured across 36 different field plots in a managed boreal forest in Eastern Finland. 

Maltamo et al. (2004), in state-owned forest located in Kalkkinen, southern Finland, using local 

maximum and segmentation techniques, detected only 39.5% of all trees, while the proportion of 

detected dominant trees was as high as 83.0%. 

In this study, the accuracy of individual tree detection measured by the F-score as expected was 

inversely proportional to forest COV. Overall, commission errors were more prevalent in less 

dense test plots and omission errors were more common where crowns overlapped. Previous 

research has shown that tree detection accuracy decreases with increasing canopy cover 

(Falkowski et al. 2008). As also reported in Falkowski et al. (2008), the influence of GPS error is 

also an unquantifiable source of uncertainty in the current study. Popescu (2007) reported that 

treetop positions may be determined with higher accuracy using a CHM image than with error-

prone measurements derived from differential GPS in the field. Even though we collected at least 

20 GPS positions at each tree and performed a differential correction, it can be argued that the 

field GPS tree location is less accurate than the treetop location detected from LiDAR, especially 

in high canopy cover conditions that can degrade field GPS accuracy (Wing et al. 2008). For 
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example, in Figure 12, the reference tree location represented by the black point (Figure 12A) 

and vertical black line (Figure 12B and C) are located far away from the treetop location (white 

point, Figure 12A) and the point cloud peaks (Figure 12B). This leads to a less accurate stem 

map in areas with high COV, ultimately making it very difficult to objectively determine if a 

sample tree had actually been detected in high canopy cover situations. Moreover, the irregular 

shape of longleaf pine tree crowns likely further reduces tree detection accuracy compared to 

most other conifer species with more regular conical crowns. 

Imputing forest attributes at tree level 

In this study, we used an individual tree detection and crown delineation approach to 

compute HMAX and CA, which were subsequently employed as predictors to estimate tree-level 

metrics such as V and BA in a modeling framework (RF k-NN imputation). This is the first study 

to detect individual trees and model tree-level attributes using such an approach in longleaf pine 

forest. 

In the modeling process, before building the tree-level RF k-NN imputation model, it was 

necessary to match individual trees detected from the LiDAR-derived CHM with the associated 

reference trees measured in the test plots. The rSTree was able to match up 48.0% of all 

reference trees. Most of the missed trees occurred in test plots with COV conditions over 70%. 

However, even though an ideal situation (i.e., matching all the LiDAR and reference trees) was 

not achieved, the rStree algorithm proposed herein is still appropriate for tree matching when 

GPS errors in the field-based stem map are an issue. 

Error in estimating Ht, BA and V came disproportionately from young trees, although these 

comprised only 1.9% of the total number of stems. Additional error could be attributed to the 1-
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year difference between the LiDAR acquisitions (2008) and field measurements (2009). 

Nevertheless, the accuracies of the RF k-NN imputation model for imputing Ht and V were 

satisfactory, with RMSD in the cross validation ranging from 2.96 to 8.19%, clearly surpassing 

the stated goal of less than 15%. On the other hand, the adjusted model was not able to 

accurately model BA. However, the primary contributor to the high BA estimation error is that 

the height-diameter allometry for longleaf pine breaks down after reaching a diameter of ~25 cm, 

when height growth asymptotes at ~25 m (Gonzalez-Benecke et al. 2014). The addition of crown 

dimension attributes to a biometric model can help, but in this study it did not explain much BA 

variance. 

The use of airborne LiDAR to retrieve forest attributes such as Ht, V and BA at tree level 

has been not widely studied, however some previous studies have shown the great potential of 

this technology to provide it. For example, Maltamo et al. (2009) using LiDAR-based metrics 

and k-Most Similar Neighbor (k-MSN) imputation for predicting tree-level characteristics from a 

reference data set comprising 133 trees reported relative RMSEs of 1.95%, 5.6%, and 11.0% for 

the Ht, DBH and V attributes estimation in 14 Scots pine (Pinus sylvestris L.) plots located in the 

Koli National Park in North Karelia, eastern Finland. Vauhkonen et al. (2010), working in mixed 

conifer mixed forest dominated most by Scots pine and Norway spruce (Picea abies L. Karst.) in 

southern of Finland, employed k-MSN and RF imputation methods simultaneously for estimating 

stem dimensions using LiDAR-based variables, and reported relative RMSEs of 3%, 13% and 

31%, for Ht, DBH, and V, respectively. Vastaranta et al. (2014) using a multisource single-tree 

inventory (MS-STI) in a broad mixture of forest stands located in Evo, Finland, reported RMSEs 

ranging from 4.2% to 5.3% , from 10.9% to 19.9% and from 28.7% to 43.5%, for Ht, DBH, and 
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saw log volume, respectively. Our accuracies were not higher than those reports in Maltamo et 

al. (2009) and Vauhkonen et al. (2010). However, it is difficult to compare these results with 

ours owing to methodological and site differences. 

Lindberg and Hollaus (2012) reported estimates of individual tree BA that were more accurate 

based on the regression models than derived from identifying tree tops from local maxima in the 

CHM in Hemi-Boreal forest in the southwest of Sweden. Furthermore, Vauhkonen et al. (2010) 

reported that the variation in RMSEs of 11–15% for individual tree BA estimation was due to the 

type of method (k-MSN or RF), value of k, and the set of predictor variables applied in the 

modeling process. Another study also in Evo, Finland, Kankare et al. (2015) verified that the 

DBH accuracy was inversely proportional to tree density, where DBH accuracy decreased when 

tree density increased. 

Our BA results might be improved by optimizing k or adding more individual tree metrics as 

predictors, such was canopy volume (Chen et al. 2007, Vauhkonen et al. 2010). Even though it is 

time consuming, individual tree segmentation directly from the LiDAR point cloud methods as 

presented by Reitberger et al. (2009), Ferraz et al. (2012) and Yao et al. (2013) are considered 

alternatives to increase the number of individual tree metrics to be derived from the LiDAR point 

cloud data, as can be accomplished with the rLiDAR package (Silva 2015). We have tested the 

rLiDAR algorithms for individual tree detection and crown delineation on a CHM derived from 

airborne LiDAR at plot- and stand-levels, the rLiDAR package is not designed to ingest large 

LiDAR datasets, due to inherent memory limitations of R compared to specialized LiDAR 

processing software such as FUSION/LDV and LAStools. 
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Stand-level forest attributes characterization 

The longleaf pine forest attributes estimates reported in this study represent useful 

information for the study and management of the longleaf pine forest at the Ichauway site. The 

spatially detailed information such as the number, location, spacing, size, Ht, BA and V 

distribution of individual trees as available in map form (not shown) helps managers to achieve 

greater management and conservation efficiency. Forestry studies often produce estimates of the 

stand-level forest attributes, and how they change over time (Gonzalez-Benecke et al., 2014). 

Therefore, the distributions of the structural forest attributes reported previously in Figure 11 are 

relevant for forest planning and assessments of economic value. 

Conclusions 

In this study, we investigated the use of LiDAR and RF k-NN imputation for individual 

tree detection and forest attributes modeling in longleaf pine forest. Overall, our method detects 

individual trees with high accuracy in areas with < 70% COV. The precision and accuracy of 

LiDAR in retrieving Ht and V parameters at an individual tree level using the framework 

presented was clearly demonstrated through a relative RMSE and BIAS less than 15%. Even 

though the desired accuracy of BA was not fully attained, the framework presented herein can 

serve as a useful methodology, and the result will ultimately support further study and 

management of longleaf pine forest ecosystems in the study area. We hope that the promising 

results for individual tree level forest attribute modeling in this study will stimulate further 

research and applications not just in longleaf pine but other forest types. 
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Table 1. Statistical summary of tree measurements attributes at the sample plots 

Stand 

Nº 

Plots 

Tree Density (N/ha) DBH (cm) Ht (m) 

min max mean sd min max mean Sd min max mean sd 

NE 7 201 204 202 2 10.00 60.00 30.66 12.11 6.20 31.40 23.01 5.12 

CNT 6 126 194 147 25 10.00 74.60 33.21 13.77 6.10 33.30 23.24 4.77 

NW 2 77 203 131 61 9.50 71.30 36.29 14.02 8.50 32.10 22.75 4.75 
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Table 2. Statistical summaries of tree basal area (BA) and stem volume (V) at 

sample plots. 

Stand 

BA (m
2
/Tree) V (m

3
/tree) 

min max mean sd min max mean sd 

NW 0.01 0.40 0.12 0.08 0.04 2.44 0.94 0.47 

CNT 0.01 0.44 0.10 0.07 0.01 2.73 1.01 0.50 

NE 0.01 0.28 0.09 0.06 0.01 2.28 0.99 0.52 
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Table 3. LiDAR flight parameters 

LIDAR Survey Parameters 

Scan Frequency 45 Hz 

Scan Angle +/- 20 deg 

Scan Cutoff +/- 4.0 deg 

Scan Offset 0 deg 

System PRF 125 kHz 

Swath Width 344.64 m 

Flying Altitude 600m AGL 

Down Track Resolution 0.75 m 

Points per square meter 5.06 

Horizontal Datum NAD83 

Vertical Datum NAVD88 (GEOID 03) 

Projection UTM Zone 16N 
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Table 4. Individual tree detection in the test subplots. The highlighted gray color 

represents the best results, which were determined by comparing the number of trees detected 

(NTD) to the field-based tree inventory number (N). The closest values of NTD compared with 

N were selected as the best results.  

Plots Stand COV Ref. 

(N) 

 TWS  

3x3 5x5 7x7 

SWS SWS SWS 

NF 3x3 5x5 NF 3x3 5x5 NF 3x3 5x5 

1 NW 68.39 803 4675 1112 587 1246 702 478 620 507 413 

2 75.63 815 4725 1156 586 1312 674 480 639 514 410 

3 CNT 70.40 519 4063 893 467 1028 515 393 485 399 340 

4 70.96 503 4346 939 490 1079 548 410 526 425 370 

5 71.47 572 4256 1021 536 1131 632 437 570 467 381 

6 72.62 543 4208 953 505 1096 584 426 550 440 385 

7 73.17 777 4222 1052 577 1110 622 449 552 452 383 

8 75.53 621 4723 1050 573 1221 620 465 609 483 410 

9 NE 60.13 321 2994 684 346 750 373 272 344 275 243 

10 61.75 306 3222 701 363 771 414 283 374 300 250 

11 63.85 366 3366 750 393 852 427 319 414 323 292 

12 63.96 338 3319 743 370 849 396 292 411 318 265 
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13 72.24 737 4006 940 510 1018 563 405 521 436 368 

14 74.50 810 4379 1012 547 1119 612 437 530 463 385 

15 75.56 797 4357 1023 561 1145 620 452 567 454 391 

Ref.: reference number of tree per test plot (N); TWS: fixed treetop windows size; SWS: 

fixed smoothing windows size; NF: no filter applied; NE: Northeast stand; CNT: Central stand 

and NW: Northwest stand. 
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Table 5. Accuracy assessment results of LiDAR-based individual tree detection 

according to recall (r), precision (p) and F-score (F) statistics parameters. 

Subplots COV (%) 

Number of Trees Detected (NTD) 

r p F 

LiDAR Reference FP FN TP 

1 46.21 13 16 1 4 12 0.75 0.92 0.83 

2 46.87 16 18 2 4 14 0.78 0.88 0.82 

3 50.66 8 6 2 0 6 1.00 0.75 0.86 

4 56.55 5 5 0 0 5 1.00 1.00 1.00 

5 60.31 4 4 0 0 4 1.00 1.00 1.00 

6 63.02 4 4 0 0 4 1.00 1.00 1.00 

7 64.71 9 8 1 0 8 1.00 0.89 0.94 

8 67.13 7 5 2 0 5 1.00 0.71 0.83 

9 71.41 16 17 3 4 13 0.76 0.81 0.79 

10 71.45 18 21 2 5 16 0.76 0.89 0.82 

11 74.33 20 23 4 7 16 0.70 0.80 0.74 

12 76.93 11 10 2 1 9 0.90 0.82 0.86 

13 80.56 23 27 3 7 20 0.74 0.87 0.80 

14 85.58 15 13 3 1 12 0.92 0.80 0.86 

15 83.48 8 8 1 1 7 0.88 0.88 0.88 

Overall 66.41 177 185 26 34 151 0.82 0.85 0.83 
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Table 6. Accuracy assessment results for the individual tree detection as a function of 

LiDAR-derived COV. FP: False positive; FN: False negative; TP: True positive; r: recall; p: 

precision and F: F-score. 

COV (%) 

Number of Trees Detected (NTD) 

r p F 

LiDAR Reference FP FN TP 

≤ 70 60 53 9 (17.0) 2 (3.8) 51 (96.2) 0.96 0.85 0.90 

>70 117 132 17 (12.9) 32 (24.2) 100 (75.8) 0.76 0.85 0.80 

Overall 177 185 26 (14.1) 34 (18.1) 151 (81.6) 0.82 0.85 0.83 
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Table 7. Estimated tree attributes summarized at the stand-level. 

Stands NTD 

Ht (m) BA (m
2
) V (m

3
) 

Mean Sd Mean Sd Total Mean Sd Total 

NW 36958 23.17 4.14 0.10 0.07 3824.11 0.96 0.40 35658.33 

CNT 52184 21.26 5.34 0.09 0.07 4478.04 0.80 0.49 42114.29 

NE 35980 21.10 5.42 0.09 0.07 3119.95 0.79 0.49 28564.40 

NTD=Number of Trees Detected 
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Figure 1. Longleaf pine forest location A, B and D and profile picture, at Ichauway in 

southwestern Georgia, USA. NW: Northwest ; CNT: central and NE: Northeast stands. 
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Figure 2. Flowchart of the LiDAR data processing. 
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Figure 3. Illustration of the individual tree crown delineation algorithm. T= trees. A) Treetops; 

B) Buffer search area of 10 m maximum radius; C) Centroidal Voronoi Tessellation delineation; 

D) Buffer and Centroidal Voronoi Tessellation overlaid area; E) CHM clipping; F) Crown 

delineation. 

D
ow

nl
oa

de
d 

by
 [

O
re

go
n 

St
at

e 
U

ni
ve

rs
ity

] 
at

 1
0:

26
 0

7 
Ju

ne
 2

01
6 



ACCEPTED MANUSCRIPT 

ACCEPTED MANUSCRIPT 52 

 

Figure 4. rSTree algorithm: searching for the LiDAR and reference trees. MED= maximum 

Euclidian distance, MHD= minimum height deference, HD= height difference. 
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Figure 5. LiDAR based plot HMAX (A) and COV( B); and tree density(C) measured in the field 

at the longleaf pine test plots. Error bars indicate standard deviations. 
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Figure 6. LiDAR-derived COV versus number of reference trees (N) measured in the field (A), 

and LiDAR-derived versus reference tree densities. 
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Figure 7. Relationship between LiDAR-derived COV and F-score in the 15 test subplots. 
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Figure 8. Distribution of LiDAR-derived HMAX (A) and CA (B) values. The black line 

represented a fitted distribution. 
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Figure 9. Equivalence test graphs for the imputed and observed longleaf pine tree attributes. A) 

Tree Height Ht (m); B) Tree Basal Area - BA (m2); Tree Volume - V (m3), N=1061. The 

equivalence plots design presented herein are an adaptation of the original equivalence plots 

presented by Robinson (2015). The grey polygon represents the ± 25% region of equivalence for 

the intercept, and the red vertical bar represents a 95% of confidence interval for the intercept. 

The imputed tree attributes are equivalent to the reference attributes when the red bar is 

completely within the grey polygon. If the grey polygon is lower than the red vertical bar, the 

imputed attributes are biased low; if it is higher than the red vertical bar, the imputed forest 

attributes are biased high. The grey dashed line represents the ± 25% region of equivalence for 

the slope, and the red vertical bar is contained completely within the grey dashed line, the 

pairwise measurements are equal. A bar that is wider than the region outlined by the grey dashed 

lines indicates highly variable predictions. The gray dots are the pairwise measurements, and the 

solid line is a best-fit linear model for the pairwise measurements. The black dashed line 

represents the 1:1 line.
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Figure 10. Imputed and observed tree attributes distribution from the testing dataset. A, B and C 

represent Ht, BA and V distribution across the three stands. The numbers 1 and 2 represent the 

imputed and observed values. The black line represented a fitted distribution and the dashed 

vertical line represented the mean.
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Figure 11. Distribution of imputed tree attributes (Ht, BA and V) across the three stands in the 

study area. The numbers from 1 to 3 represent the attributes Ht, BA and V, respectively. The 

letters from A to D represent the NE, CNT and NW, and all stands, respectively. The black line 

represented a fitted distribution and the dashed vertical line represented the mean. 
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Figure 12. Illustration of individual tree detection and crown delineation under different COV 

conditions. 1) COV = 90.96%; COV= 76.79%, and 3) COV= 58.66%. A) 2D visualization of the 

tree location and crown delineation over the CHM. B) 3D visualization of the LiDAR point 

cloud and reference trees measured in the field. C) 3D visualization of the LiDAR virtual forest, 

and the reference tree locations. 

 

D
ow

nl
oa

de
d 

by
 [

O
re

go
n 

St
at

e 
U

ni
ve

rs
ity

] 
at

 1
0:

26
 0

7 
Ju

ne
 2

01
6 


