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ABSTRACT

Headwater streams play critical roles in hydrologic

and biogeochemical processes and functions, yet

their spatial distribution and land cover context

remain poorly understood at continental scales,

and no dedicated geospatial dataset exists. Building

from a high-resolution conterminous United States

(CONUS) hydrography network dataset, we quan-

tified the spatial extent, density, and upstream

catchment characteristics of headwater stream

segments across the CONUS. We identified

approximately 8.4 million kilometers of headwater

streams, finding that 77% of the total stream net-

work consists of headwaters, nearly double the

total length represented in prior estimates. Stream

density varied fivefold across regions, from < 1

kmÆkm-2 in arid basins to > 5 kmÆkm-2 in humid,

forested areas. Over 73% of the CONUS landmass

drains from headwater streams. The majority of
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headwater stream length occurred in forested and

cultivated catchments across the CONUS, while

substantial regional differences were evident for

headwater stream distribution in other land cover

classes (for example, wetlands, urban areas,

shrublands, and herbaceous-dominated catch-

ments). The dedicated and novel geospatial dataset,

HELiOS (HEadwater streams and Low-Order Sys-

tems) is introduced for management and research

use. The HELiOS dataset provides the first conti-

nental-scale, high-resolution characterization of

headwater streams, offering new insights and

opportunities for hydrologic modeling, ecological

assessments, and environmental policy.

Key words: Headwater streams; Headwater

catchments; HELiOS; Land cover; Land use.

HIGHLIGHTS

� New headwater streams and systems dataset for

the conterminous United States (CONUS)

� Headwater streams comprise � 77% of CONUS

stream length and drain > 73% of the landmass

� Headwater systems have predominately forested,

shrub, and cultivated land covers

INTRODUCTION

Headwater streams are found in mountainous,

piedmont, and low-lying areas worldwide (Allen

and others 2018). They represent the most up-

stream loci of concentrated flow and sediment

transport (Wang and others 2018), typically within

well-defined banks, emerging from visible and de-

fined channels as concentrated surface water flow

from hillslope processes and groundwater con-

tributing areas (Montgomery and Dietrich 1988,

1989). Though coarse in their mapped resolution,

current global estimates of headwater stream ex-

tents suggest they comprise nearly 77–89% of river

networks (Allen and others 2018; Messager and

others 2021) and perform functions that substan-

tially contribute to watershed scale processes and

resilience (for example, hydrological flow mainte-

nance, biogeochemical cycling, and nutrient pro-

cessing; Alexander and others 2007; Hill and others

2014, Fritz and others 2018; Gómez-Gener and

others 2021; Lane and others 2023; Price and oth-

ers 2024). For instance, recent modeling analyses

suggest that ephemeral headwater streams that

flow only in direct response to precipitation con-

tribute approximately 55% of the streamflow to

large downstream rivers across the conterminous

United States (CONUS; Brinkerhoff and others

2024). However, headwater streams are regionally

and globally imperiled due to the lack of specific

protections as well as the paucity of mapped extent

(Wohl 2017; Sullivan and others 2020); as such,

they have been termed ‘‘vulnerable waters’’ (Creed

and others 2017).

Despite the growing attention on these streams,

analyses and syntheses remain stymied by the lack

of readily available spatial data delineating head-

water streams and headwater systems with known

accuracy and provenance. Headwater systems, fol-

lowing Golden and others (2025), are discrete and

spatially bounded drainage areas contributing sur-

face and groundwater, material, and energy to a

headwater stream. Headwater streams are thus

contained within these headwater systems.

To overcome existing limitations of geospatially

explicit mapped headwater stream extent (Fritz and

others 2013), researchers are incorporating novel

approaches toward more finely identifying head-

water reaches and their concomitant ephemeral,

intermittent (that is, seasonally connected to

groundwater systems yet with annual drying cy-

cles), or perennial stream flows (Messager and

others 2021). These include the use of satellite

constellations (Wang and Vivoni 2022), machine-

learning approaches (Villines and others 2015;

Greenhill and others 2024), fractal and power-law

analyses (Allen and others 2018; Barefoot and

others 2019), and contributing area estimations

(Fesenmyer and others 2021; Amatulli and others

2022), as well as intensive field expeditions (refer

to an in-depth review by Christensen and others

2022). Yet headwater streams are typically small.

For example, an analysis of over 4000 headwater

stream width measurements across seven intensely

analyzed catchments in North America and New

Zealand determined that headwater stream width

was typically 32 ± 7 cm (Allen and others 2018).

Their size, therefore, makes them challenging to

consistently identify across broad spatial extents

(for example, large watersheds, regions, and con-

tinents). Further work is needed in the United

States and on the global stage to uniformly and

consistently map headwater stream longitudinal

extent and headwater system contributing areas.

Such maps provide the opportunity to quantify

headwater stream functional contributions to

downstream waters in a repeatable and transparent

manner (for example, through modeling ap-

proaches, Golden and others 2025).
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Conventional headwater stream definitions are

based on a geomorphological perspective. That is,

they are defined as concentrated flow within visible

and defined channels originating at a channel

head. A channel head is defined as ‘‘the upslope

limit of erosion and concentration of flow within

steepened banks’’ (Montgomery and Dietrich 1989,

p. 1909), where a definable bank ‘‘must be recog-

nizable as a morphological feature independent of

the flow’’ (Dietrich and Dunne 1993, p. 178). Such

a definition allows us to describe how these streams

appear in the field.

However, there is a lack of consistent and readily

available headwater stream and catchment

geospatial data that uniformly identifies headwater

streams and systems for mapping, modeling, and

management across broad spatial extents. The

solution for this requires application of an ‘‘opera-

tional definition’’ of headwater streams, defined by

Golden and others (2025, p. 18), as Strahler

(Strahler 1957) stream orders 1 and 2 in a

‘‘1:24,000 or similar scale stream network map.’’

This operational approach enables headwater

stream identification across readily available global

datasets through analysis of a typical stream net-

work component attribution (that is, stream order).

Recently, Golden and others (2025, their supple-

mental Table S1) provided additional context for

identifying headwater streams as Strahler stream

orders 1 and 2, including an annotated bibliogra-

phy wherein headwater stream definitions across

the literature are introduced. We ultimately agree

with their conclusions: invoking the operational

definition of Strahler stream orders 1 and 2 on

1:24,000 maps establishes a benchmark with

mapped headwater streams in this rubric dis-

charging into the larger-order stream network. This

operational approach provides a clear spatial limit

to the headwater stream extent—though not a

limit to the downstream functional contributions of

headwater streams (for example, Alexander and

others 2007; Hill and others 2014; Fritz and others

2018; Ali and English 2019; Brinkerhoff and others

2024).

The need for an authoritative dataset that iden-

tifies headwater streams and their drainage areas

(that is, headwater systems) across broad spatial

extents is paramount. Recent events in the United

States regarding the local, state, and federal man-

agement of surface waters, including headwater

streams, have underscored the importance of

available, approachable, and uniform headwater

stream extent data for analyses (Greenhill and

others 2024). Stream protections and/or manage-

ment options at the local, state, tribal, or federal

levels may well hinge on the prevalence of peren-

nial versus non-perennial flows within headwater

streams and on down gradient network connec-

tions (Brinkerhoff 2024). As a result, substantial

advances in modeling and analyzing stream net-

work locations and characteristics to estimate flow

prevalence and material contributions are neces-

sary (Jaeger and others 2019; Mahoney and others

2023; Lane and others 2025). Failing to provide

these data for resource managers limits options for

managing headwater streams and their functions

(Creed and others 2017). In short, the current lack

of an existing and readily accessible CONUS-wide

operationally defined headwater stream geospatial

dataset is affecting local, regional, and national-le-

vel analyses, syntheses, and management of

headwater streams and our understanding of their

contributions to downstream flows, water quality,

and ecological processes (Fritz and others 2013; Hill

and others 2014; Creed and others 2017; Fesen-

myer and others 2021; Erickson and others 2023;

Lane and others 2023; Du and others 2024; Golden

and others 2025).

Here, we identify the headwater streams and

headwater system extents across the CONUS with

the goal of providing a novel CONUS-based head-

water stream and headwater system geospatial da-

taset of known provenance, which we term

HELiOS (HEadwater streams and Low-Order Sys-

tems). We use the best publicly available and

downloadable data for research and management

questions (that is, NHDPlus-HR; Moore and others

2019), modified to create CONUS-wide headwater

stream topology and appropriate density distribu-

tions across the CONUS, and apply a uniform

operational headwater stream definition recently

promulgated by Golden and others (2025). We

demonstrate an application of these data to provide

insights on current land cover distributions in

headwater systems across the CONUS (Homer and

others 2020). The availability of the HELiOS

geospatial data will facilitate emerging headwater

stream and system research in the CONUS and

beyond, research which will improve headwater

management options and the timely and important

need for estimating in-stream and drainage-based

headwater contributions to downstream aquatic

systems and communities (Hughes and others

2023).

MATERIALS AND METHODS

In our analyses, we used the foundational National

Hydrography Dataset (NHD; USGS Geological Sur-

vey 2022), which was developed by the United
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States Geological Survey (USGS) and is ‘‘…con-

sidered to have the best available stream/river data

for the CONUS…’’ (Christensen and others 2022,

p.3). An NHD coproduct, the NHDPlus-HR (for

‘‘High Resolution’’, Moore and others 2019) was

built by the US Environmental Protection Agency

(US EPA) and the USGS on the 1:24,000 (or more

detailed) NHD and contains ‘‘value-added attri-

butes’’ with substantive hydrography data—in-

cluding identification of initiating stream nodes,

attribution of contributing areas to stream nodes,

and a modified Strahler (1957) stream order (SO)

calculation for networks throughout the CONUS

(Johnston and others 2009). This Strahler stream

order determination can be used by definition and

convention as a proxy to identify headwater

streams within the dataset, as we further describe

below. Note that the term ‘‘modified Strahler’’ SO

calculation relates to the approach used in the

derivation of the base data used herein (NHDPlus-

HR, described further below). As described by

Moore and others (2019), the NHDPlus-HR stream

order algorithm incorporates flow splits, whereas

the original Strahler stream order (1957) does not.

Derivation of Stream Orders
and Headwater Networks

CONUS Stream Orders

To delineate the lotic network components re-

quired for our analyses and the derivation of the

HELiOS geospatial dataset, we acquired the full,

CONUS-wide NHDPlus-HR from USGS data repos-

itories (https://www.usgs.gov/national-hydrograph

y/nhdplus-high-resolution, accessed August 2023).

USGS provides attributes within the NHDPlus-HR

useful for geospatial analyses, including character-

izing the first segment of a flowing water network

(Moore and others 2019). However, we were

interested in both the lotic network (rather than

only the first headwater segment) and in applying

the conventional and operational headwater defi-

nitions (that is, SO1 and SO2 network components

on mapped stream networks with 1:24,000 mapped

resolution or better (Golden and others 2025)). We

therefore focused on the ‘‘StreamOrder’’ attribute

within NHDPlus-HR, modified as noted below and

applied CONUS-wide to attribute the spatial data

with updated Strahler stream order values (Fig-

ure 1). We thereby used these stream order values

to define headwater streams and contributing

headwater systems. The geospatial processing to

create the stand-alone HELiOS geospatial data can

be conceptualized as follows: within the NHDPlus-

HR, segments with Strahler stream order 1 values

are the mapped origins of streams (Meyer and

others 2003; Wohl 2018; Wohl and others 2019).

When two SO1 network components are con-

nected at a node (that is, a stream convergence),

the node initiates a stream order 2 network (refer

to, for example, Figure 1). The areas cumulatively

draining the SO1 and SO2 network components

are the headwater systems.

However, as others have noted (Christensen and

others 2022; Brinkerhoff and others 2024), a pre-

liminary analysis of the NHDPlus-HR CONUS-scale

data indicated stream density variability due to

inconsistent mapping decisions by cartographers

creating the network lines (Christensen and others

2022). That is, certain CONUS areas have stream

networks appearing ‘‘over-densified’’, meaning

they have unusually high stream density when

contrasted with other similarly situated watersheds

within ecoregions or across state boundaries (Fig-

ure 2). While we do not assess the accuracy nor

granularity of NHD updates entered over time by

state and local data stewards (Arnold 2014), as

stream orders are derived as an additive metric and

are dependent on the granularity of the mapped

system (that is, the mapped resolution; Baker and

others 2007), consistency is important to charac-

terize the CONUS-scale headwaters. Thus, regional

inconsistencies due to cartographic decisions by

data stewards (Moore and others 2019) create dif-

ferences affecting network analyses; and hence,

NHDPlus-HR stream order calculations include

over-densified areas relative to surrounding

watersheds (for example, Lane and others 2017,

Christensen and others 2022, Brinkerhoff and

others 2024). This necessitated a revision of the

data in certain regions for consistency in stream

density within ecoregions and across the CONUS.

We identified over-densified watersheds through

assessment of USGS Hydrologic Unit Code (HUC) –

twelve-digit basin-identifier stream network den-

sities. Following Lane and others (2017) and

Brinkerhoff and others (2024), we visually identi-

fied marked and abrupt differences in mapped

drainage densities that do not correspond to phys-

iographic boundaries (for example, Figure 2). We

noted over-densified areas throughout the state of

Indiana, including the following Level III ecore-

gions (Omernik 1987): Interior Plateau, Interior

River Valley, Central Corn Belt, Eastern Corn Belt,

Drift Plains, and Huron–Erie Lake Plains. Though

not as starkly evident as Indiana, an area located in

western North Carolina and South Carolina,

including the Blue Ridge and Piedmont ecoregions

(refer to Figure 2), was also visually identified as
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over-densified and required modification of stream

order attribution. As detailed in the Supplemental

Material (Table S1), we corrected for over-densified

areas by examining mapped stream densities and

calculating the mean contributing area for each

stream order by ecoregion. We contrasted the mean

density values within and across state boundaries

(for example, contrasting Interior Plateau water-

sheds entirely in Indiana to Interior Plateau

watersheds entirely in Illinois) and adjusted the

stream network origins via stream order to be

consistent throughout the ecoregions. This in-

evitably resulted in a decrease in the mapped net-

work density and extent in certain putatively over-

densified areas, yet was deemed necessary for the

creation of a consistent geospatial data set for

mapping headwater streams across CONUS (that is,

the HELiOS).

Following the network adjustments in over-

densified areas, (refer to, for example, Brinkerhoff

and others 2024), we derived revised Strahler

stream orders using the Assign River Order (ARO;

available in ArcHydro) tool within ArcGIS Pro 3.3

(ESRI, Redlands, CA). Input data for the ARO tool

are vector lines, from-to nodes, and a table derived

from the NHDPlus-HR data maintaining the typo-

logical relationships between upstream–down-

stream segments. By removing the over-densified

areas and using a systematic approach based on

median drainage densities for SO1 and SO2 within

Figure 1. Headwater stream networks are operationally defined as Strahler (Strahler 1957) first and second stream order

(SO) streams, here identifying SO1 and SO2 streams flowing into Yellowdirt Creek (SO3), Georgia (12-digit HUC

031300020405). Note that SO1 streams converge to form SO2 streams in the Strahler convention; however, lower-order

streams can also flow directly to larger-ordered systems, as demonstrated with the four SO1 streams mapped as tributaries

to the SO3 (with its contributing systems grayed out) in the bottom portion of the panel
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the over-densified ecoregions, we were able to

generate a new CONUS network typology that

updated stream orders to ensure consistency across

the CONUS.

Strahler stream order 1 (SO1) components typi-

cally represent the uppermost portions of the

flowing water network (refer to Figure 1). These

areas include headwater stream networks that

Figure 2. Cartographic decisions resulted in portions western North Carolina and South Carolina, as well as all of Indiana,

being potentially over-densified (evident in top panel), or having a greater abundance of identified streamlines when

contrasted with other watersheds in the same ecoregions (Omernik 1987; refer to also, for example, the stark

differentiation between streams mapped on either side of the state lines, bottom panels). In the top panel, from

Christensen and others (2022, used by permission), first-order streamlines identified from the NHDPlus-HR ‘‘stream

order’’ attributions are removed to facilitate visualizing the over-densification issue across the CONUS; the first-order

streams are shown in the bottom panels
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drain the landscapes and merge with other SO1

networks to become components of SO2 headwater

streams. However, some SO1 network components

do not merge with other SO1 systems and instead

drain directly to high-order reaches (for example,

such as a third or fourth-order river system) or

contribute directly to other waters. These SO1

headwater network components that drain to

higher-order systems or other waters are main-

tained in the geodatabase and are also defined as

headwater streams. SO2 networks include SO1

networks that drain and merge with another SO1

network to become an SO2 network.

Transboundary and Coastal Watersheds

We analyzed headwater stream distribution

through the CONUS using twelve-digit HUC

watersheds (n = 83,539, covering 8,253,834 km2)

to spatially bound the network, noting that twelve-

digit HUCs are the smallest watershed boundaries

(that is, the most granular) applicable across the

CONUS. However, the NHDPlus-HR may not have

complete coverage in transboundary areas—wa-

tersheds extending into either Canada or Mexico

typically lack complete stream characterization of

the watershed (Figure S1). Further, watershed

delineation into coastal areas similarly creates sit-

uations where watershed areas extend into estu-

arine and marine systems, potentially

underestimating the portion of the HUC basin in-

cluded in headwaters or adding additional artificial

lines through the marine systems to maintain

network connectivity (for example, Figure S1). For

the purposes of reporting these data herein we

exclude transboundary and coastal watersheds

from our analyses and report hereafter on interior

watersheds that do not cross boundaries with Ca-

nada or Mexico and exclude watersheds in the

coastal zone. We identified the international

boundaries, coastlines, and waterbodies associated

with the coastline (for example, bays and inlets)

using TIGER/Line files (US Census Bureau 2010);

these data are included in the publicly available

dataset. To avoid erroneously including potentially

problematic transboundary or coastal headwater

watersheds, we buffered the international (trans-

boundary) border with a 1.0-km buffer and the

coastline with a 0.1-km buffer, identifying and

flagging twelve-digit HUC watersheds intersecting

those buffers as border or coastal watersheds,

respectively. These border-flagged (n = 1123, 1.8%

of the CONUS area) and coastal-flagged twelve-

digit HUCs (n = 2148, 6.7% of the CONUS area)

were not included in these analyses. However,

noting that others may wish to include trans-

boundary and coastal twelve-digit HUC watersheds

in their analyses, we provide this dataset for com-

pleteness, including the flagged NHDPlus-HR

watersheds extending into Canada and Mexico and

coastal watersheds, for end users to acquire (refer

to the Data Availability statement).

Final CONUS Headwater Stream Network Product

Our final geospatial end-product of these analyses,

the mapped stream network comprising the

CONUS-wide extent of headwater streams (that is,

SO1 and SO2 on a 1:24,000 or finer map), incor-

porated the data described above into a novel

CONUS headwater stream geodatabase, the HE-

LiOS. These geospatial data are available at the

twelve-digit HUC watershed scale (refer to Data

Availability statement). We further report head-

water stream density stream density (streamlength

(km) / watershed area(km2)) per two-digit HUC as

a potential measure of headwater stream contri-

butions to surface runoff processes affecting bio-

geochemical functions, precipitation-based flood-

response in stream networks, and sediment load

dynamics in headwater stream systems (Godsey

and Kirchner 2014). We chose two-digit HUCs as

an application of the data at the CONUS scale that

could be reasonably described and discussed here-

in.

Headwater Systems

As noted, headwater systems are discrete, spatially

bounded drainage areas contributing surface and

groundwater, material, and energy to a headwater

stream (Golden and others 2025). Headwater

streams are contained within these headwater

systems. Following the derivation of the CONUS-

wide headwater stream network, we analyzed the

NHDPlus-HR to identify the watersheds (that is, the

land areas) associated with, and draining to and

through, our derived headwater stream network.

We developed novel Python code and R scripts to

delineate upstream, contributing watersheds across

the CONUS for the headwater stream network

(that is, the headwater networks defined above).

Utilizing the NHDPlus-HR watershed boundary

polygons, an upstream drainage area was created

for each of the headwater network components

across the CONUS. Headwater watershed polygons

were converted to 10-m raster data using ArcGIS

Pro (version 3.3) to remove any potential area

overlap of watershed topology and to aid in the

land cover analyses. The novel headwater water-

sheds are included as part of the CONUS headwater
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stream geodatabase (that is, the HELiOS) and,

similar to the headwater streams described above,

are available by twelve-digit HUC (refer to the Data

Availability statement).

HELiOS Dataset Application

Once we identified the linear headwater stream

extent and the corresponding headwater system

areal extent, we analyzed land cover within these

systems (Odum 2002) to demonstrate an applica-

tion of the HELiOS geospatial data. We assessed the

extent and composition of land cover data within

the HELiOS using the 2021 National Land Cover

Database with 30-m spatial resolution (Dewitz

2023). The total area of each of the NLCD cate-

gories (explicit definitions given in Table S2) within

twelve-digit HUC watersheds were calculated using

Tabulate Area Analysis for the CONUS in ArcGIS

Pro (version 3.3). These data are available by

twelve-digit HUC (refer to the Data Availability

statement).

Table 1. Headwater Stream Data across the CONUS, Reported Here at the Two-digit HUC Level (n = 18)

Two-digit

hydrologic

unit code Ba-

sin

Total

number of

HUC12s

analyzed

Summed

HUC12

basin area

(km2)

Total

flowline

length

(km)

Headwater

stream length

(km) summed

Headwater stream

length as a percent of

total flowline length

(%)

Headwater stream

density (within

HUC12, kmÆkm-2)

01—New Eng-

land

1562 137,001 161,181 120,406 75 0.9

02—Mid-

Atlantic

2756 233,937 311,512 233,204 75 1.0

03—South

Atlantic-

Gulf

7207 664,886 883,691 656,262 74 1.0

04—Great

Lakes

3378 276,402 282,474 208,748 74 0.8

05—Ohio 5278 421,966 591,373 451,882 76 1.1

06—Tennessee 1075 105,949 187,971 145,869 78 1.4

07—Upper

Mississippi

5727 491,440 542,364 409,336 76 0.8

08—Lower

Mississippi

2538 252,522 447,768 337,653 75 1.4

09—Souris-

Red-Rainy

1425 144,114 85,977 61,859 72 0.5

10—Missouri 13,386 1,314,966 1,928,771 1,459,785 76 1.1

11—Arkansas-

White-Red

6493 642,213 897,156 688,515 77 1.1

12—Texas-

Gulf

4104 440,950 538,829 408,151 76 1.0

13—Rio

Grande

3044 324,454 395,265 314,237 80 1.0

14—Upper

Colorado

3179 293,569 500,429 390,554 78 1.4

15—Lower

Colorado

3746 356,093 592,532 478,619 81 1.4

16—Great Ba-

sin

3200 367,049 578,260 462,667 80 1.3

17—Pacific

Northwest

7978 692,312 1,225,519 949,016 77 1.4

18—California 4192 396,789 741,947 584,587 79 1.6

Flowlines as given in the table include the summed length of connectors (NHDPlus-HR attributed as feature code [FCODE] 334), canals/ditches (FCODE 336), underground
conduits (FCODE 420), pipelines (FCODE 428), streams and rivers (FCODE 460), artificial paths (FCODE 558), and coastlines (FCODE 566)
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Figure 3. Proportional extent of headwater stream length as compared to total stream length across CONUS at 8-digit HUC

scale (n = 2086). The CONUS-wide average within the interior 8-digit HUCs is 77%. The names of the 2-digit HUCs are

provided in Table 1. (Modified from Lane and others 2023)

Table 2. Headwater Stream Systems Drained Over 5.5 Million km2, or > 73% of the Landmass, across the
CONUS

Two-digit hydrologic unit code Ba-

sin

Headwater stream system area

(km2)

Headwater stream systems (% of

HUC12s)

01—New England 99,674 73

02—Mid-Atlantic 168,950 72

03—South Atlantic-Gulf 489,740 74

04—Great Lakes 208,420 75

05—Ohio 325,456 77

06—Tennessee 81,281 77

07—Upper Mississippi 353,010 72

08—Lower Mississippi 192,842 76

09—Souris-Red-Rainy 104,654 73

10—Missouri 899,517 68

11—Arkansas-White-Red 488,116 76

12—Texas-Gulf 327,265 74

13—Rio Grande 240,719 74

14—Upper Colorado 219,452 75

15—Lower Colorado 276,789 78

16—Great Basin 264,387 72

17—Pacific Northwest 508,871 74

18—California 290,874 73

Total 5,540,016 73
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RESULTS

Headwater Stream Network

Our analysis and the creation of the HELiOS, de-

rived through value-added analyses of the

NHDPlus-HR, identified 8,361,345 km of headwa-

ter streams across the CONUS (Table 1). Analyzing

results within the 18 two-digit HUCs spanning the

CONUS, the total headwater stream length ranged

from 61,859 km (09—Souris-Red-Rainy) to

1,459,785 km (10—Missouri). Headwater streams

comprised a substantial proportion of all stream

extents across the CONUS, averaging 77% of the

total stream length across the two-digit HUCs and

ranging from 72 to 81% (refer to Table 1). The

CONUS distribution at the eight-digit HUC scale is

presented in Figure 3. Headwater stream density

varied from 0.5–1.6 kmÆkm-2; the average twelve-
digit HUC headwater stream density across CONUS
was 1.1 headwater stream km per km2 (refer to Ta-
ble 1, Figure S2).

Headwater Stream System

Headwater systems within the HELiOS encom-

passed 5,540,016 km2 across CONUS (Table 2),

meaning that 73% of the non-transboundary and

non-coastal CONUS landmass drains from head-

waters. The actual area of the two-digit HUCs

covered by headwater systems ranged from 81,281

km2 (06 – Tennessee) to 899,517 km2 (10 – Mis-

souri). Despite differences in total area within

individual two-digit HUCs, the range in percentage

of area that drains headwaters was relatively nar-

row (refer to Table 2), from a low of 68% (10 –

Missouri) to a high of 78% (15 – Lower Colorado).

The proportional area of each twelve-digit HUC

draining the headwater systems of the CONUS is

given in Figure 4.

Headwater Stream System Land Cover
Analysis

The proportional distribution of land cover across

CONUS headwater systems indicates that forested,

shrubland, and planted/cultivated classes dominate

(Figure 5; Table 3). Across the 18 two-digit HUCs

comprising the CONUS, the presence of water,

barren, and wetland classes was low (typi-

cally < 5% of the headwater stream land cover

and defined in Table S2), though certain two-digit

HUCs had greater amounts of those land cover

classes in their headwater systems (Table 4). For

instance, the South Atlantic-Gulf (03), Great Lakes

(04), Lower Mississippi (08) and Souris-Red-Rainy

(09) two-digit HUCs all had > 17% of their head-

water systems classified as wetlands whereas two-

digit HUCs spanning most of the western CONUS

were all £ 1% wetland land cover (refer to, for

example, Table 4). The proportional area of each

eight-digit HUC (n = 2085) draining from head-

water systems of the CONUS (excluding border and

coastal twelve-digit HUCs removed as noted

Materials and Methods, above) is given in Figure 5.

Figure 4. Proportion of each12-digit HUC draining from headwater (HW) systems varied across the CONUS and averaged

approximately 73%. The 2-digit HUCs are given as numbered basins (refer to Table 1)
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DISCUSSION

We derived a novel high-resolution headwater

stream and headwater system spatial database for

the CONUS, coined herein as the HELiOS (HEad-

water streams and Low-Order Systems), based on

value-added analyses of NHDPlus-HR. The deriva-

tion of these freely available data provides oppor-

tunities for end users conducting hydrological,

biogeochemical, ecohydrological, and other re-

Figure 5. Forested and cultivated lands dominated the land cover within headwater systems (NLCD Level 1, refer to

Table 4) within each 8-digit HUC (n=2,085, excluding border and coastal HUC12s) across the CONUS. The 8-digit HUC

distribution is given in the pie chart to the bottom left, with the same classes as the CONUS legend

Table 3. Analyses of Land Cover Within Headwater Systems across the CONUS Indicates that Forested,
Shrubland, and Planted/Cultivated Classes Dominate. Note that due to rounding the values add to > 100%

Class NLCD code Classification description CONUS-wide headwater Average

Water 11 Open Water 1%

12 Perennial Ice/Snow 0%

Developed 21 Developed, Open Space 3%

22 Developed, Low Intensity 2%

23 Developed, Medium Intensity 1%

24 Developed High Intensity 0%

Barren 31 Barren Land (Rock/Sand/Clay) 1%

Forest 41 Deciduous Forest 10%

42 Evergreen Forest 13%

43 Mixed Forest 3%

Shrubland 52 Shrub/Scrub 25%

Herbaceous 71 Grassland/Herbaceous 13%

Planted/Cultivated 81 Pasture/Hay 7%

82 Cultivated Crops 17%

Wetlands 90 Woody Wetlands 4%

95 Emergent Herbaceous Wetlands 1%
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search to analyze the functions, processes, charac-

teristics, and contributions of headwater streams

and systems to down gradient surface waters.

Watershed-scale responses to hydrologic and bio-

geochemical perturbations are dependent, in part,

on the proper functioning of headwater streams

(Vannote and others 1980; Battin and others 2008;

Hotchkiss and others 2015; Price and others 2024).

These data can therefore be used to manage

watersheds, > 73% of which drain from headwa-

ter stream systems on average across the CONUS

(refer to Table 2), for continued resilience to

anthropogenic disturbances (Lane and others

2023). Our dataset may also support data-driven

and model-based watershed scale analyses to dis-

cern the hydrological, biogeochemical, and eco-

logical effects of headwater streams and systems on

downstream rivers and streams. In particular, the

HELiOS data could be used to model the extent to

which headwater functions mediate watershed re-

silience to future land cover and climate distur-

bances—as well as other hydrological and

biogeochemical perturbations (Lane and others

2023; Golden and others 2025).

We present the data herein because there are no

recently updated CONUS-extent headwater stream

estimates (Christensen and others 2022) and be-

cause the spatial resolution of global datasets is

coarser than required for CONUS-extent headwater

research and management. This paucity of current

high-resolution headwater maps leads, in part, to

excluding these important ecosystem and water-

Table 4. Land Cover Within Headwater Systems Presented at the Two-digit HUC Level and Analyzed by
NLCD Level 1 Classification system (that is, a Coarser Classification System Combining Similar Land Covers,
such as Deciduous [NLCD Code 41 in Table 3], Evergreen [Code 42], and Mixed [Code 43] Forests Summed
Here as Forest)

Two-digit HUC

watershed

Headwater Systems by Level 1 NLCD Land Cover Classes (%)

Water

(11,12)

Developed

(21–24)

Barren

(31)

Forest

(41–43)

Shrubland

(52)

Herbaceous

(71)

Planted/

Cultivated

(81,82)

Wetlands

(90,95)

01—New Eng-

land

3 9 0 69 2 2 4 11

02—Mid-Atlan-

tic

1 15 0 56 1 1 21 5

03—South

Atlantic-Gulf

1 13 0 38 4 4 21 17

04—Great Lakes 2 10 0 35 1 2 32 19

05—Ohio 0 11 1 48 0 1 39 1

06—Tennessee 1 11 0 60 1 1 24 1

07—Upper Mis-

sissippi

2 9 0 17 0 0 64 7

08—Lower Mis-

sissippi

2 8 0 28 3 2 40 18

09—Souris-

Red-Rainy

3 4 0 9 1 3 60 20

10—Missouri 1 4 1 9 16 35 34 1

11—Arkansas-

White-Red

1 6 0 21 12 30 30 1

12—Texas-Gulf 1 9 0 13 39 9 27 3

13—Rio Grande 0 2 0 13 80 3 1 1

14—Upper Col-

orado

0 1 2 26 67 2 2 1

15—Lower Col-

orado

0 2 1 16 76 3 1 0

16—Great Basin 1 1 5 16 67 8 2 1

17—Pacific

Northwest

1 3 1 38 30 18 9 1

18—California 1 5 4 20 44 17 9 1

Conus Total 1 6 1 25 25 13 24 5
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shed components from management and decision

making (Fritz and others 2013; Creed and others

2017; Mahoney and others 2023; refer to Fig-

ure S3). Nadeau and Rains (2007) provided the first

data-based assessment of CONUS-wide headwater

extents using the National Hydrography Dataset

Medium Resolution data set (1:100,000 scale).

They selected headwaters via the data descriptor of

‘‘start reaches’’ to identify approximately 53%

(� 2.9 million km) of NHD-mapped headwater

streams across the CONUS. Differences in our input

data-layer resolution (1:24,000 versus 1:100,000 in

Nadeau and Rains (2007)) as well as differences in

operationally defining headwaters (here, for

example, as SO1 + SO2 streams versus ‘‘start

reaches’’) likely drove differences in our findings

(for example, � 8.4 million headwater stream km

in this study, Table 1). Further, while headwater

stream identification gaps are being filled at the

global scale as well, challenges remain. For exam-

ple, Amatulli and others (2022) used the MERIT

Hydro digital elevation model at 90-m resolution

and a 0.05 km2 contributing area to develop a

global hydrological data set, a major advancement

for global stream and river mapping. However, they

report that headwater stream extent is under-esti-

mated by 28% in these new data (Amatulli and

others 2022), and estimating the lateral stream

location (that is, the precise stream location within

a valley bottom) similarly remains a challenge

when utilizing coarse-resolution data with a small

contributing area. In fact, spatial overlaps between

the new global data and the benchmark NHDPlus-

HR used in that study occur < 50% of the time

using a 100-m buffer, though overlaps increase

correspondingly with additional buffer widths. It is

evident that higher-resolution topography and

more refined derivation of contributing areas will

improve our understanding of headwater stream

and system extent and functions (Yamazaki and

others 2019; Messager and others 2021).

Our new CONUS-wide headwater stream and

system HELiOS database is a key step toward

developing mapped headwaters across a broad

spatial extent for research and management, yet

further research and development is needed. First,

our data are predicated on the precision of the in-

put NHDPlus-HR to map CONUS flowing waters,

the gold-standard for completeness as a CONUS-

wide hydrography dataset. However, data limita-

tions affect the outcomes found here. For instance,

the NHD does not map all stream systems due to

scale limitations (Baker and others 2007; Chris-

tensen and others 2022). Fritz and others (2013)

characterized 105 forested headwater reaches in

the Midwestern US and reported that 43 (or 41%)

of the reaches were not delineated on the

NHDPlus-HR maps. Hansen (2001) similarly found

1:24,000 maps omitted 25% of the perennial

stream length in an analysis of the Chattooga River

drainage spanning portions of Georgia, South Car-

olina, and North Carolina. The NHDPlus-HR is

therefore a truncated network. In fact, a full

Strahler stream order (or more) may be missing

from the mapped extent (Brinkerhoff and others

2024). Conversely, areas such as Indiana and por-

tions of western South Carolina and North Carolina

were identified here (and by others, such as

Brinkerhoff and others 2024) as presumptively

over-densified (refer to, for example, Figure 2). We

sought uniformity to conduct our CONUS-wide

analyses and removed many of the stream seg-

ments in the over-densified areas. However, we

recognize that the data stewards who entered these

data into the NHDPlus-HR may have been on the

leading-edge in mapping low-order stream net-

works. For the sake of CONUS-scale uniformity, we

may have removed extant and mapped headwa-

ters. Ideally, subsequent HELiOS derivations and

iterations will raise the base (and map additional

headwater streams) rather than raze the top (that

is, remove mapped headwater streams) for

CONUS-scale uniformity. The coming remapping of

US waters through the USGS 3D Hydrography

Program (‘‘3DHP’’) could substantially improve the

identification and delineation of CONUS headwater

streams and systems (Anderson and others 2024).

Additional omission errors in headwater stream

extents across the country arise from limitations on

input data layers that comprise the NHD (for

example, issues with identifying stream networks

under a tree canopy, Lang and others 2012),

methodological decisions in delimiting streams (for

example, typically not mapping streams that

are < 1.6 km in length, Nadeau and Rains 2007),

as well as prevailing and/or antecedent conditions

when delimiting stream extents (Hafen and others

2020). For instance, though � 59% of CONUS

streams may be ephemeral (Brinkerhoff and others

2024), 38 of 50 states do not map ephemeral

streams as a defined class in their NHDPlus-HR

dataset (Fesenmyer and others 2021). Using novel

approaches to expand beyond NHDPlus-HR map-

ped streams can substantially increase potential

mapped headwater stream extents. Fesenmyer and

others (2021) applied varying contributing water-

shed area thresholds and calculated that the

NHDPlus-HR under-estimated the stream network

by roughly 5.9 million stream kilometers. Non-

perennially flowing portions of streams, which are
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frequently unmapped, also cover greater stream

extents than perennial streams in many watersheds

(Heine and others 2004; Hamada and others 2016;

Fesenmyer and others 2021; Messager and others

2021). Ephemeral reaches may comprise up to 71%

of the network length (Hansen 2001; Fritz and

others 2013); however, the NHD maps only 8–50%

of visible stream extents, depending on the focal

area’s spatial data resolution and data product.

Further, field-based analyses of stream networks

indicated that they can vary in their flow lengths

annually, up to a factor of five (Prancevic and

others 2025). In fact, the non-perennially flowing

portion (that which is frequently unmapped) was

noted to be many times longer than the perennial

system in most watersheds (Prancevic and others

2025). Thus, while our estimate of headwater

stream density using the HELiOS dataset appears to

follow global density estimates (Lin and others

2021), this may change with increased mapping

precision. Future work could potentially leverage

evolving remotely sensed data to improve the

spatial resolutions of mapped stream networks and

create mapped networks that are more physically

based (Golden and others 2025).

Continued advancements in deriving geospa-

tially mapped stream networks to the channel

head—the ‘‘place where rivers are born’’ (Meyer

and others 2003)—are needed. Through advanced

approaches and with improved spatial resolution of

available data, headwater stream mapping will

continue to evolve with greater accuracy. That is,

finer-resolution mapping products will become

increasingly available (for example, Metes and

others 2022; Du and others 2024), and the

1:24,000 based stream maps will become corre-

spondingly coarser in comparison. Therefore, the

operational definition of headwater streams (as

Strahler stream orders 1 and 2) we use here will

move up-gradient and likely decrease in areal ex-

tent (while the corresponding higher-orders will

increase in number and extent). Put simply, more

finely resolved data may identify currently mapped

small first-order tributaries as larger-order systems,

changing the outcome of the headwater analyses

(refer to, for example, Supplemental Figure S3).

Subsequent analyses may thus find focusing on the

dataset introduced here (that is, the HEadwater

streams and Low-Order Systems, HELiOS) provides

a construct for analyzing the structure and func-

tional contributions of headwater systems that are

identified using scalar products.

CONCLUSION

Increased attention to the extent, flow, and func-

tions of headwater stream networks and the sys-

tems they drain will improve our understanding of

their contributions to watershed scale processes

and resilience to disturbance. The application of

our headwater stream rubric to the NHDPlus-HR

identified > 8.4 million headwater stream km

draining 5.5 million km2 of the CONUS landscape.

These systems predominantly drain forested and

shrub-covered lands, yet a large proportion also

drain agricultural and developed landscapes, likely

providing useful ecosystem services (for example,

Hill and others 2014). This novel finding under-

scores the importance of expanding highly instru-

mented and monitored headwater research

catchments, traditionally located in forested sys-

tems, to arid, agricultural, and urban headwater

catchments as well.

The HELiOS data we developed will improve the

capacity for researchers and managers to model and

estimate headwater system contributions to

downstream hydrological, biogeochemical, and

ecological functions under future land cover or

climate conditions. Further, geospatially bench-

marking the existing headwater stream network

and system extent will aid in quantifying changes

in characteristic flow, function, and benefits of

headwater streams and systems over time and

through change (for example, Sullivan and others

2020). A worldwide effort to improve the charac-

terization of intermittent rivers and ephemeral

streams has substantially improved their incorpo-

ration into management decision making (Mes-

sager and others 2021). Similarly, calls to advance

modeling of headwater streams have begun to

proliferate (Golden and others 2025), building on

these advances. Identifying the headwater stream

networks and headwater systems across spatial

scales (that is, the HELiOS) contributing to water-

shed scale resilience to hydrological and biogeo-

chemical perturbations will continue to illuminate

their broad and important functions.
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