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[1] Recent studies of catchment hydrologic response are incorporating increasingly
complex datasets to investigate model representation of spatial and temporal variability.
In this paper, catchment rainfall-runoff and stable isotope tracer response were modeled
using a lumped conceptual model that integrates the unit hydrograph and isotope
hydrograph separation methodologies. The model was applied across eight nested
catchments (7 to 147 ha) for four rainstorms collected between summer and fall in
2001–2002, generating a usable 23 rainstorm datasets ranging from 1.2 to 10.3 h in length
and spanning variability in environmental conditions related to storm characteristics (size
and intensity) and antecedent moisture. Monte Carlo simulations were run for four model
structures of varying complexity and evaluated using a Generalized Likelihood Uncertainty
Estimation (GLUE) approach. We found that a model of intermediate complexity was
adequate to model all catchment-storm pairs. Relationships between the parameters of the
best model and catchment and storm characteristics were sought. We found that the fraction
of effective rainfall routed as event water was correlated to rainstorm size but insensitive to
catchment size, indicating that it is controlled by environmental conditions such as storm
intensity and size. The mean transit time of event water decreased with increasing rainstorm
size, indicating increased connectivity during larger rainstorms. Finally, a linear relation
was found between the mean transit time of event water and catchment size suggesting that
the time it takes for event water to be transferred to the stream is directly related to
catchment size, particularly for catchments greater than 30 ha.
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1. Introduction
[2] Comprehensive understanding of streamflow generation

processes, their temporal variability and their spatial heteroge-
neity continues to offer contemporary challenges to practicing
and research hydrologists [Kirchner, 2006; McDonnell et al.,
2007]. Recent investigations have tackled these challenges
from both empirical and modeling approaches. Empirical
approaches incorporating hydrometric, geochemical, and/or
isotopic concentration data have attempted to achieve hydro-
logic understanding of the influence of geology, topography,
antecedent moisture conditions (AMC), and catchment size
on the rainfall-runoff process through observations made at
specific catchments [Mulholland et al., 1990; Sklash, 1990;

Sidle et al., 1995; Brown et al., 1999; Shanley et al., 2002;
McGlynn et al., 2004; Onda et al., 2006]. The use of stable
isotopes in investigations of streamflow generation continues
to expand across varied landscapes and land-use [e.g., Kabeya
et al., 2007; Jeelani et al., 2010; Moravec et al., 2010; Liu
et al., 2011]. On the modeling side, Beven [2001, 2009] and
Wagener et al. [2004] offer recent reviews of rainfall-runoff
modeling, providing new frameworks and toolboxes for
improved treatment of uncertainties due to both model struc-
ture and parameters. Many modeling efforts that incorporate
environmental tracer data have considered a single catchment
and a single set of conditions [Seibert et al., 2003; Soulsby
and Dunn, 2003; Weiler et al., 2003; Iorgulescu et al., 2005;
Lyon et al., 2008]. Despite the combined effort, it is still
immensely challenging to predict behavior in regions lacking
data or outside the range of observed or modeled conditions.
In light of these difficulties emphasis has recently been placed
on studies that incorporate both the experimental (i.e., data
based) and conceptual modeling (i.e., based on conceptual
representations of the processes) viewpoints [e.g., Seibert and
McDonnell, 2002; Iorgulescu et al., 2007; Son and Sivapalan,
2007; Tetzlaff et al., 2008]. Even though several of these new
frameworks have provided a more realistic representation of
the runoff generation process, there continues to be a need for
datasets and modeling efforts that examine spatial and tempo-
ral variability of response to try to understand the physical
development of the rainfall-runoff process in terms of its
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aggregation in space (e.g., as drainage area changes) and time
(e.g., as the size of the storm changes) [Kirchner, 2006;
McDonnell et al., 2007]. This understanding would eventually
allow transferring results between geographic regions and ulti-
mately enable the prediction of the runoff response in unga-
uged catchments.

[3] Over the last decade emphasis has shifted from using
hydrologic models to reproduce and predict streamflow to-
ward the use of modeling as a learning tool to understand
hydrologic behavior and its physical foundations [Fenicia
et al., 2008; Bai et al., 2009; Birkel et al., 2010]. Recently,
such efforts have emphasized the importance of incorporat-
ing auxiliary data in addition to streamflow to improve
catchment representation, the definition of model structure,
and to aid in model evaluation by constraining model pa-
rameters. Auxiliary data incorporated in modeling studies
to aid calibration include soil properties [e.g., Atkinson
et al., 2002; Eder et al., 2003; Farmer et al., 2003], the
distribution of saturated areas [e.g., Franks et al., 1998;
Guntner et al., 1999], environmental tracer response [e.g.,
Seibert and McDonnell, 2002; Weiler et al., 2003; Iorgulescu
et al., 2005; Tetzlaff et al., 2008], and groundwater levels
[e.g., Lamb et al., 1997; Freer et al., 2004; Fenicia et al.,
2008].

[4] Relevant to the purpose of this study are conceptual
modeling efforts that incorporate stable isotope (d18O, dD)
tracer data in model formulation and evaluation. These stud-
ies range in temporal scale, from multiannual analysis of
mean residence time [see McGuire and McDonnell, 2006] to
seasonal time-scale studies [e.g., Seibert and McDonnell,
2002; Soulsby and Dunn, 2003; Iorgulescu et al., 2005,
2007; Fenicia et al., 2008; Birkel et al., 2010], to event-
based studies [e.g., Weiler et al., 2003; Johnson et al., 2007;
Lyon et al., 2008; Tetzlaff et al., 2008; Roa-Garcia and
Weiler, 2010]. The spatial scale within this last group of
studies currently varies between 2 and 3100 ha. For exam-
ple, Seibert and McDonnell [2002] used estimates of new
water contributions derived from isotope hydrograph separa-
tion in a short-term (1 month) lumped reservoir model of the
17 ha Maimai catchment; new water contributions based on
d18O observations from six rainstorms were used to calculate
the degree of acceptance of model runs. They found that the
incorporation of these auxiliary data resulted in lower overall
model efficiency (i.e., lower value of the objective function)
but overall improved model performance (i.e., better agree-
ment between new water contributions estimated by the
model versus experimental observations). Modeling the
same Maimai catchment data set, Fenicia et al. [2008]
derived a series of conceptual semidistributed models. They
showed that the level of complexity of the model had to
increase as additional data was progressively incorporated
into the model structure. Their final model structure was
able to better capture the hydrologic response of the catch-
ment by the incorporation of both stable isotope data and
groundwater level observations.

[5] End-member-mixing-analyses have also been incorpo-
rated in conceptual modeling. The results from a three end-
member analysis conducted in a 1000 ha Scottish catchment
were used to validate the outcome of the conceptual semidis-
tributed model DIY [Soulsby and Dunn, 2003]. A study con-
ducted in a small Swiss catchment (20 ha) used the results
from end-member-mixing-analysis together with streamflow

observations [Iorgulescu et al., 2005]. The use of both trac-
ers and streamflow improved the constraints on the parame-
ter space and required an increase in model complexity,
revealing the existence of an interflow component.

[6] At the event time-scale, most conceptual model stud-
ies incorporating tracer data have been based on the ‘‘transfer
function hydrograph separation’’ (TRANSEP) framework
proposed by Weiler et al. [2003]. This framework integrates
the unit hydrograph and the isotope hydrograph separation
(IHS) techniques in a quantitative approach that allows the
analysis of the temporal variability of streamflow partitioned
into event and preevent components. The framework was
conceived to provide an alternative approach to hydrograph
separation based on a variety of tracers such as d18O [Weiler
et al., 2003; Lyon et al., 2008] and CO2 [Johnson et al.,
2007].

[7] The necessity to increase the complexity of the con-
ceptual model whenever new data are added exemplifies
our lack of understanding of the physical processes
involved in runoff generation and the need of further theo-
retical and experimental investigations. The ultimate goal
is to derive models with predictive power, i.e., capable of
reproducing a data set over which they had not been previ-
ously calibrated [Pomeroy et al., 2007]. An interesting
direction along with these studies is that of modeling
hydrologic response from different catchments of different
size and physiographic and climatic characteristics, under
different environmental conditions (e.g., antecedent mois-
ture conditions, rainstorm size). Weiler et al. [2003] sug-
gest that one of the values of the TRANSEP model is its
potential as a tool to examine scaling behavior of the transit
time of water in a very efficient way. Such efforts would
allow the study of the model parameters across catchment
characteristics and environmental conditions, lending
insight in the underlying physical processes. These studies
would also guide the development of a model parameterized
on easily measured characteristics (e.g., catchment size,
dominant soil type, surface or subsurface topography) or
conditions (rainstorm size and intensity and antecedent
moisture conditions) rather than on internal model parame-
ters such as mean transit times or water routing parameters.
A recent study combining hydrometric and stable isotope
tracer data together with transit times computed using the
TRANSEP model for a series of 18 storms in the Cascades
(OR) found that both hillslope and catchment streamflow
responded almost linearly with storm size when antecedent
rainfall was above 20 mm [McGuire and McDonnell, 2010].

[8] In this paper, we use a data set of streamflow and
d18O collected from eight nested catchments with variable
catchment area (7 to 147 ha) within the forested Mont
Saint–Hilaire UNESCO Biosphere reserve to explore the
spatial and temporal dependence of catchment response
using a conceptual model based on the TRANSEP model
of Weiler et al. [2003]. The aim is to investigate general
behavior of event time-scale catchment response [McDonnell
et al., 2007] through the comparison of model catchment pa-
rameters over space and time. IHS has already been per-
formed on this data set [James and Roulet, 2009]. The
specific objectives of this study are (1) to develop a
TRANSEP-inspired model [Weiler et al., 2003] with differ-
ent degrees of complexity integrating the instantaneous unit
hydrograph and the IHS rainfall-runoff and isotope tracer
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response, (2) to apply the model to the Mont-Saint-Hilaire
data set (four rainfall-runoff periods observed across 8 nested
catchments), (3) to evaluate the required level of model com-
plexity and behavioral range of parameters across the nested
catchments and varying environmental conditions (anteced-
ent moisture conditions, storm characteristics) and (4) to use
the spatial and temporal variability of parameterization to
investigate the behavior of hydrologic response with respect
to catchment and rainstorm characteristics and to explore the
possibility of predicting model parameters based on such
easily measurable characteristics.

2. Study Site
[9] This study was conducted in the Westcreek watershed

of the Mont Saint Hilaire UNESCO Biosphere reserve, south-
ern Quebec, Canada. The watershed is covered by old-growth
deciduous forest dominated by Sugar maple (Acer saccha-
rum) and American beech (Fagus grandifolia). Rainfall

averages �80 mm month�1, with a mean annual of 940 mm,
78% received as rain and 22% as snow. Mean daily tempera-
ture has strong seasonality, varying between �10.3�C in
winter and 20.8�C in summer. The largest, third-order catch-
ment (LK) drains 147 ha over 237 m of relief. The remaining
seven, nested catchments of orders 1 to �2 range in size
between 7 and 91 ha (Figure 1 and Table 1). Five of the
catchments are perennial and three are ephemeral with flow
absent part of the ice-free period. Average catchment slope
varies between 13.5 and 23.1% and valley-bottom area
(defined by a break in slope of 8�) varies between 1.2 and
38.7 ha [James and Roulet, 2009]. Data on soil depth is lim-
ited to select areas (e.g., AW and VC catchments). On the
hillslopes, soils are well drained with typical depths between
0 (outcrop) to 1.5 m, whereas in the valley bottoms they can
be >2 m; here, the presence of a low-permeability layer or
fragipan [Dingman, 1994] within 30–50 cm of the surface
can generate perched water tables that intermittently connect
to stream channels [James and Roulet, 2006]. The presence

Figure 1. Westcreek watershed, Mont Saint-Hilaire, Quebec, Canada. Eight small nested catchments
are defined.
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of pockets of glacial till may also offer variation in soils and
subsurface storage that are not necessarily identifiable from
DEM-derived characteristics. A full description of the study
area, including additional details on individual catchment
characteristics can be found in previous publications [James
and Roulet, 2006, 2007, 2009].

3. Methods
3.1. Hydrometric and Stable Isotope Tracer Data

[10] Rainfall-runoff and stable isotope data collected dur-
ing the summer of 2001–2002 are available for five rainstorms
[see also James and Roulet, 2009], four of which are used for
modeling in this study (Table 1). The four rainstorms
occurred under intermediate-wet to dry conditions and vary in
magnitude from 7 to 38 mm. Antecedent rainfall over the pre-
vious 7 (API7), 14 (API14), and 25 (API25) days range
between 0–65 mm, 0–85 mm, and 7.8–150 mm, respectively
(Table 1). Based on the antecedent precipitation data men-
tioned storms 1, 10, and 11 occurred under relatively dry con-
ditions, whereas storm 8 occurred under relatively wet
conditions [James and Roulet, 2009]. Throughfall was
recorded at 15 min resolution at on-site tipping bucket gauges
located at the highest elevation, most upstream (AW) and
lowest elevation, most downstream (LK) gauging stations and
were verified against bulk manual measurements. Throughfall
sampling for isotope compositions did not include sequential
sampling. Table 1 shows the total number of measurements
of streamflow (stage) and streamflow samples (isotope com-
positions) per catchment-rainstorm pair. Streamflow stage
was recorded electronically with potentiometers or pressure
transducers (every 15 min) at the eight catchments gauging
stations. In some instances electronic measurements failed
and manual stage data collected simultaneously with stream
water isotope sampling during the rainstorms were used
instead. Streamflow was unavailable for five catchment-rain-
storm pairs (Table 1, N/A). During two rainstorms no stream-
flow (Table 1, dry) was generated in a number of the
ephemeral catchments (e.g., YV, VC, and SB), leaving a total
of 23 catchment-rainstorm pairs for modeling purposes.

[11] All throughfall and streamflow (base flow and storm-
flow) samples were analyzed for d18O by the University of

Waterloo’s Environmental Isotope Laboratory. Blind sam-
ples provided a mean repeatability of d18O compositions of
60.09%. The d18O composition of new or event-water (Ce)
delivered during each storm was calculated from the volume
weighted average of throughfall compositions collected at
15 manual collectors; information on intrastorm variability
was not collected. Standard deviation in event-water com-
position due to spatial variability was below 0.16% for all
storms except for rainstorm 11 where the standard deviation
was 0.42%. Old or preevent-water d18O compositions (Cp)
were defined by base flow collected at each gauging station
prior to each storm event. Spatial variability in preevent
water composition was within 0.25%. Uncertainty in instan-
taneous streamflow was estimated as 61 standard deviation
of the best-fit rating curve coefficients for each gauging sta-
tion. This resulted in uncertainties expressed as a percentage
of streamflow that varied between 9.7% and 30% with a
mean of 16% [James and Roulet, 2009].

3.2. Model Description

[12] We use a model structure inspired by TRANSEP
[Weiler et al., 2003] which integrates the unit hydrograph
approach [Sherman, 1932] with IHS [Sklash and Farvolden,
1979]. The schematic of the model used here is illustrated
in Figure 2. The model is based on the assumption that rain-
fall-runoff can be partitioned between event and preevent
components. Event-water corresponds to streamflow gener-
ated directly from water delivered during the rainstorm and
preevent water corresponds to streamflow generated from
water stored in the catchment before the rainstorm event.
Similar to many rainfall-runoff models [e.g., IHACRES,
Jakeman et al., 1990] our model has a nonlinear module
that transforms precipitation or throughfall into effective
rainfall [Jakeman and Hornberger, 1993]. The effective
rainfall is then partitioned into event and preevent water and
convolved with a transfer function to produce rainfall-
induced runoff (i.e., excluding base flow) from both event
and preevent water contributions. The sum of these two
components gives the total runoff. The model structure can
accommodate different choices for the partition of the effec-
tive rainfall into event and preevent components and for
the complexity of the transfer functions. In this work, we

Table 1. Storm Characteristics and Number of Measurements of Streamflow Q and d18O Composition Available Per Catchment-
Rainstorm Paira

Catchment Name,
Status, (Order)

Catchment
Area (ha) Storm 8b Storm 10c Storm 11d Storm 1e

LK, perennial (3) 147 81 (10) 250 (10) 9 (9)f 73 (9)
EF, perennial, (�2) 91 70 (11) 7 (8)f 9 (8)f N/Ag

PW, perennial, (2) 48 77 (10) 9 (9)f 9 (9)f N/A
SC, perennial, (2) 38 77 (10) 99 (8) 6 (7)f 70 (10)
YV, ephemeral, (1) 30 9 (9)f N/A dry 68 (7)
VC, ephemeral, (1) 11 11 (10)f 99 (9) dry N/A
AW, perennial, (1) 11 11 (11)f 11 (11)f 8 (8)f 24 (14)
SB, ephemeral, (1) 7 120 (11) N/A dry dry

aAPI is antecedent rainfall over the previous 7, 14, and 25 days in mm, average (AI) and maximum (Max.int) rainfall intensities are given in mm/15 min.
d18O composition is in parentheses.

bSize ¼ 14.1 mm; API7 ¼ 15.1; API14 ¼ 85.1; API25 ¼ 150; Duration ¼ 1.2 h; AI ¼ 2; Max.int ¼ 6.6.
cSize ¼ 38.1 mm; API7 ¼ 4.8; API14 ¼ 24.4; API25 ¼ 27.0; Duration: 2.4 h; AI ¼ 3.8; Max.int ¼ 6.3.
dSize ¼ 7 mm; API7 ¼ 0; API14 ¼ 0; API25 ¼ 7.8; Duration: 2.9 h; AI¼ 0.6; Max.int ¼ 2.6.
eSize ¼ 25.2 mm; API7 ¼ 1.1; API14 ¼ 1.1; API25 ¼N/A; Duration: 10.3 h; AI ¼ 0.6; Max.int ¼ 12.2.
fOnly manual stage measurements were available.
gN/A: Indicates not available.

W07502 SEGURA ET AL.: RELATIONSHIPS FOR EVENT WATER AND RESIDENCE TIME W07502

4 of 21



explore two schemes for the effective rainfall partition and
two families of transfer functions for event and preevent
water contributions, for a total of four different models. In
two of the models, the fraction f of effective rainfall routed
as event water is held constant throughout the storm, while
in the other two models f is allowed to vary with the storm
intensity, following Weiler et al. [2003]. Two of the models
adopt a linear reservoir transfer function for each event and
preevent, while the other two consider two linear parallel
reservoirs. The details of the four model structures consid-
ered here are described below and reported in Table 2.

3.2.1. Module 1: Effective Rainfall
[13] The first module of the model is a nonlinear routine

that computes the effective rainfall (Peff) as the product of
rainfall and the antecedent rainfall index s(t) [Jakeman and
Hornberger, 1993]:

Peff ð tÞ ¼ pðtÞsðtÞ; (1)

where s(t) is computed by exponentially weighting rainfall
p backward in time with a memory timescale parameter w,
through the equation [Weiler et al., 2003]:

sðtÞ ¼ cpðtÞ � sðt ��tÞ 1� 1

w

� �
; (2)

where c is a normalization constant that is calculated a pos-
teriori from the hydrometric data to maintain the water bal-
ance (�Peff ¼ �Q). The initial value of s, indicated as s0,
and the time constant w are the two free parameters of this
module.

3.2.2. Module 2: Event and Preevent Routing
[14] Effective rainfall (Peff) is routed as either event or

preevent water. A fraction f < 1 of the effective rainfall is

Figure 2. Schematic representation of the general model
structure inspired by TRANSEP [Weiler et al., 2003]. All
parameters are fitted simultaneously. Difference in four dif-
ferent model structures are described in Table 2.

Table 2. Model Structure, Parameters Per Module, Initial Parameter Ranges, and Total Number of Parameters Per Model Structurea

Parameter Units Model 1 Model 2 Model 3 Model 4

Effective Rainfall
s0 – 0–1 0–1 0–1 0–1
w 15-min time steps 0–40 0–40 0–40 0–40

f
cf 15-min mm�1 – 0–1 – 0–1
wf 15-min time steps – 0–40 – 0–40
f – 0–1 – 0–1 –

Reservoirs of Event and Preevent Water
qe – – – 0–1 0–1
ke h 0–50 0–50 – –
kfe h – – 0–50 0–50
kse h – – 0–125 0–125
qp – – – 0–1 0–1
kp h 0–125 0–125 – –
kfp h – – 0–50 0–50
ksp h – – 0–125 0–125

Equations (See Section 3.2. Model Description)
1, 2, 4, 5, 7, 9, 10, 11 1, 2, 3, 4, 5, 7, 9, 10, 11 1, 2, 4,6, 8, 9, 10, 11 1, 2, 3, 4, 6, 8, 9, 10,11

Total Number of Parameters
5 6 9 10

aIn bold are parameters for which initial ranges were progressively narrowed.
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routed as event water; while the remaining fraction (1 � f )
is routed as preevent water. Since hydrograph separation
studies have found that f depends on total rainfall amount,
rainfall intensity, and antecedent wetness conditions
[Bottomley et al., 1984; McDonnell et al., 1990; Pionke
and Dewalle, 1992], Weiler et al. [2003] suggested the use
of a time-variable f through the rainstorm, parameterized
with an equation analogous to equation (2) in which s(t) is
replaced with f (t) and f (0) ¼ 0:

f ðtÞ ¼ cf pðtÞ � f ðt ��tÞ 1� 1

wf

� �
: (3)

[15] In this study we explored both the possibility of a
constant f (models 1 and 3) and the possibility of a variable
f as given by equation (3) (models 2 and 4). This module
has a single free parameter ( f ) in models 1 and 3 and has
two free parameters (cf and wf) in models 2 and 4 (Table 2).

3.2.3. Module 3: Event and Preevent Transfer
Functions

[16] The fraction f of effective rainfall routed as event
water is convolved with a transfer function, he(�) to find
the event water runoff:

QeðtÞ ¼
Z t

0

heð�ÞPeff ðt � �Þf ðt � �Þd�: (4)

Two different transfer functions were explored: the first
describes a single linear reservoir :

heð�Þ ¼
1

ke
exp � �

ke

� �
; (5)

where ke is the mean transit time; the second describes two
linear reservoirs in parallel :

heð�Þ ¼
qe

kfe
exp � �

kfe

� �
þ 1� qe

kse
exp � �

kse

� �
; (6)

where qe is the fraction of water routed into the fast-
responding reservoir and kfe and kse are the mean transit
times of the fast and slow reservoirs, respectively. These
transfer functions were suggested by Weiler et al. [2003] in
the TRANSEP formulation and have been successful at
modeling rainfall-runoff response in a number of situations
[Weiler et al., 2003; Iorgulescu et al., 2005; Johnson
et al., 2007; Lyon et al., 2008; Birkel et al., 2010; Roa-
Garcia and Weiler, 2010].

[17] Two analogous transfer functions were used to
describe the generation of the preevent runoff:

hpð�Þ ¼
1

kp
exp � �

kp

� �
(7)

and

hpð�Þ ¼
qp

kfp
exp � �

kfp

� �
þ 1� qp

ksp
exp � �

ksp

� �
; (8)

with the symbols having the same meaning as for equations
(5) and (6) but for the preevent water. In all cases the time
constants of the event and preevent water transfer functions
were left free to vary independently in order to take into
account the fact that the speeds of propagation of the pres-
sure wave (hydraulic response) and solute transport (iso-
topes) are different [Weiler et al., 2003]. An analogous
convolution was also used to calculate the preevent runoff:

QpðtÞ ¼
Z t

0

hpð�ÞPeff ðt � �Þf ðt � �Þd�: (9)

[18] Once the event (Qe) and preevent (Qp) runoff have
been computed, the tracer composition (e.g., d18O) in the
stream is calculated as:

cð tÞ ¼ QeðtÞCe þ bQpðtÞ þ QbcCp

Qe þ Qp þ Qb
; (10)

where Ce is the tracer composition of event water (rainfall),
Cp is the tracer composition in preevent water (e.g., base
flow prior to the rainstorm), and Qb is base flow stream-
flow. In this study, due to the absence of data on the vari-
ability of Ce during a rainstorm (i.e., sequential sampling of
rainfall), the model assumes that Cp and Ce are constant
over the duration of the rainstorm. This assumption is a
potential shortcoming of the data set that could have identi-
fied an additional source of experimental uncertainty that
will potentially limit model structure evaluation. Con-
versely, the original version of TRANSEP Weiler et al.
[2003] allows for Ce to vary over the duration of the storm.

[19] Once the best-fit transfer functions for event and
preevent water have been found by data-fitting, total runoff
can be calculated as the sum of event and preevent water.
The total water transfer function g(�) can be obtained
through the implicit equation:

Z t

0

gð�ÞPeff ðt � �Þd� ¼
Z t

0

heð�ÞPeff ðt � �Þf ðt � �Þd�

þ
Z t

0

hpð�ÞPeff ðt � �Þ½1� f ðt � �Þ�d�: (11)

Practically, computing g(�) would require a deconvolution, an
operation that even numerically is fraught with severe insta-
bilities. The main difference between TRANSEP [Weiler
et al., 2003] and our modeling approach is that we focus on
the transfer functions of event and preevent water (i.e., pulling
out parameters for he(�) and hp(�)), fitting them directly and
simultaneously using the measurements of total streamflow
and isotope concentrations). In contrast, TRANSEP focuses
on the transfer functions of total streamflow (g(�)) and of sol-
ute (isotopes concentrations), and fits them in sequence.

[20] Table 2 summarizes the four model structures con-
sidered and the free parameters relevant to each of the
models. Model 1 has a constant fraction of effective rainfall
routed as event water ( f ) and a single reservoir for each
event and preevent water ; model 2 has time-variable f and
a single reservoir for each event and preevent water; model
3 has constant f and two reservoirs in parallel for both event
and preevent water, and model 4 has time-variable f and
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two reservoirs in parallel for each event and preevent
water. For all four models, streamflow (Q) and isotopic
concentrations (d18O) are computed every 15 min. For rain-
storms with limited streamflow data, model predictions
were interpolated to match the time series of the observa-
tions (Q and d18O). The total number of parameters for the
four model structures varies between 5 and 10 (Table 2).

3.3. Model Parameterization and Performance

[21] Our initial intent was to model each catchment-rain-
storm pair using the four model structures described above.
However, based on early simulation results for a subset of
13 catchment-rainstorm pairs spanning the range of catch-
ment sizes and storms, this strategy was modified, (see
section 4.1), and only one of the four model structures was
considered for modeling of the remaining 10 catchment-
rainstorm pairs. The decision of abandoning three of the
models was based both on comparisons of model perform-
ance measured with the Nash Sutcliffe (NS) efficiency
coefficient [Nash and Sutcliffe, 1970] and the level of
model parsimoniousness measured with the Akaike Infor-
mation Criterion (AIC) [Akaike, 1974]. The AIC provides a
quantitative tool with which to distinguish the most parsi-
monious model among several. It is defined as:

AIC ¼ � 2log ðmÞ � 2k; (12)

where m is the maximum likelihood and k is the number
of parameters in the model. The �2 statistic was used as the
likelihood since �2log (m) ¼ �2 [Bevington and Robinson,
2003] and

�2 ¼
XN

i¼1

ðOi � PiÞ2

�2
i

; (13)

where Oi and Pi are observed and predicted values of
streamflow or d18O composition and �i is the uncertainty
associated with the observed values. As mentioned in
section 3.1 streamflow uncertainties varied between 9.7
and 30.4% and d18O uncertainties between 0.16 and
0.42%. The sum of the AIC for streamflow and d18O was
calculated for each of the initial 13 catchment-rainstorm
pairs and then ranked. The model with the lowest AIC is
the most efficient at fitting the observed values. The AIC
not only rewards goodness of fit, but also penalizes models
with higher number of parameters providing a measure of
parsimoniousness. Results were confirmed by visual inspec-
tion of the observed and predicted time series of runoff and
d18O composition. The model parameterization and per-
formance was separated into two steps:

3.3.1. Initial Simulation of 13 Storms Using Four
Model Structures

[22] A Monte Carlo approach was used to generate ran-
dom parameter sets for which total streamflow (Q) and
tracer composition (d18O) were simulated. For each of the
13 catchment-rainstorm pairs, an initial run of 10 million
simulations was performed for each of the four models
with the widest parameter ranges; some parameter ranges
were then progressively narrowed over 1 to 4 sets of runs
(see Table 2 for initial parameter ranges). This narrowing
was only performed for some of the well-identified parame-
ters and was done with care so that all the parameter space
of behavioral simulations was sampled. At this time, the
level of identification of the parameters was assessed by
visual analysis of dotty plots. For example, Figure 3 illus-
trates the model 1 simulation results for catchment-pair EF-
8. In Figure 3, parameters f, and time constants ke, and kp

are well identified. The only parameters for which the initial

Figure 3. Dotty plots of model 1 parameters for catchment-storm pair EF-8. Note that the y axis starts
at the behavioral threshold (mean NS ¼ 0.85); there are 11,636 behavioral runs. The thick line represents
the maximum NS for streamflow (Q) alone and the lighter line the maximum NS for d18O alone. Each
dot represents the mean NS (Q and d18O) for one behavioral run.
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parameter space was reduced were the time constants ke and
kp, for Models 1 and 2 and kfe and kfp for Models 3 and 4
(Table 2). We ran a minimum of 20 million simulations per
model and catchment-storm pair and a maximum of 200
million simulations. In order to ensure that the number of
simulations was large enough to capture the best efficiency
the following procedure was followed: We performed a set
of runs with increasing number of simulations where run i
contained a total number of simulations proportional to 2i.
We then let i grow until the standard deviation of the effi-
ciencies found in the last 4 runs was less than 1% of their
average. We then retained the last run, with the highest
number of simulations, as the final set of simulations with
which to compare results of the 4 models. This scheme
ensured that no additional simulations would have resulted
in a significant improvement of model performance, in other
words, that each model structure was fully evaluated. All
parameters for each model structure were fit simultaneously.
Model performance was evaluated using the Nash Sutcliffe
(NS) efficiency coefficient [Nash and Sutcliffe, 1970] for
both streamflow and d18O compositions. We selected an ar-
bitrary NS threshold of 0.85 to classify evaluated parameter
sets as ‘‘behavioral’’ or ‘‘nonbehavioral.’’ Recent studies
have used NS values ranging from 0.15 to 0.85 to define be-
havioral versus nonbehavioral simulations [e.g., Iorgulescu
et al., 2005; Son and Sivapalan, 2007; Fenicia et al., 2008;
Hrachowitz et al., 2009; Salazar et al., 2010].

[23] We gave equal importance to the fit of streamflow
and d18O; a ‘‘behavioral’’ set required a NS � 0.85 for

both streamflow and d18O compositions. A similar approach
was taken by Iorgulescu et al. [2005] who also used NS for
streamflow and silica and calcium tracer compositions.
Other objective functions have been used to evaluate the per-
formance of tracer compositions (e.g., the root-mean-square
error, Weiler et al. [2003]) however NS was selected here
because it is dimensionless. Once the best parameter set for
each model was found, both the NS efficiency and the AIC
were used to select the best model structure, in terms of both
strength of the fit and parsimoniousness.

3.3.2. Simulation of All Catchment-Storm Pairs Using
Model 3

[24] Based on the results attained in step 1 for 13 catch-
ment-storm pairs only model 3 was used to simulate the
remaining 10 catchment-storm pairs. The total number of
model 3 simulations performed for each of the 23 catchment-
storm pairs was a function of two criteria (1) the criteria
implemented in the previous step (i.e., a the standard
deviation of the efficiencies found in the last 4 runs less
than 1% of their average) and (2) a minimum of 1000 be-
havioral parameter sets in order to apply the GLUE meth-
odology. As a result, the total number of simulations
performed for model 3 varied between 20 and 27,000
million runs (Figure 4).

3.4. Model 3 Parameter Identification

[25] A preliminary estimate of the level of identification
of model 3 parameters was achieved by visual inspection of
dotty plots. In addition, a measure of identification (MI) of

Figure 4. Total number of model 3 simulations performed for each catchment-storm pair and number
of behavioral parameter sets. The minimum number of 1000 behavioral simulations considered to fully
apply GLUE is displayed as a solid line.
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model parameters was implemented by calculating the ratio
between the behavioral parameter range to the initial range
of each of the 9 parameters of model 3. Since four of the
parameters (s0, f, qe, qp) are fractions, their range of vari-
ability included all possible values and varied between
0 and 1 (Table 2). The initial ranges for the four transit
time constants (kfe, kse, kfp, and ksp) and for the w parameter
were set very wide to ensure capturing all range of variabil-
ity. The selected ranges are only partially arbitrary; for the
four time constants, the initial range was taken to be signifi-
cantly longer than the interval over which the data were
collected. If time constants are nonidentifiable in that inter-
val, they cannot become identifiable in a broader interval
since our data would not allow us to be sensitive to time
constants longer than the time over which the data were
collected. However, this does add a level of arbitrariness to
our identification measure. We set up an arbitrary threshold
for this ratio of 0.35 to discriminate between identifiable
(MI < 0.35) and nonidentifiable parameters (MI > 0.35).

3.5. Patterns of Parameter Variability

[26] Pearson correlation was used to evaluate relation-
ships between identifiable parameters values and catchment
area, rainstorm size and intensity, and antecedent moisture
conditions. These relationships were explored using best
values of well-identified parameters in each catchment-
storm pair. Since more than one storm was analyzed in
each catchment (with the exception of SB), the best catch-
ment-specific value and corresponding uncertainties were
also derived by combining results from different storms.
The probability distribution (p) of a catchment-specific pa-
rameter was obtained by convolving and rescaling the

probability distribution of the parameter from each storm
using equations (14) and (15):

pð xþ yÞ ¼ pðxÞ � pðyÞ; (14)

pð�xÞ ¼ �pðx=�Þ; (15)

where x and y are two independent stochastic variables
( p(x, y) ¼ p(x)p(y)), the symbol � represent the convolution
operator, and � is a constant [Grinstead and Snell, 1997].
An analogous procedure was applied to derive a probability
distribution of storm-specific parameters across different
catchments. Our average parameters for catchment or
storms (i.e., convolved) were derived only after ensuring
that the individual probability distributions were in agree-
ment with each other (i.e., they overlap).

4. Results
4.1. Comparison of Model Performance

[27] An evaluation of model performance was performed
using a subset of 13 catchment-storm pairs selected across
all four storms and a range of catchment sizes (Figure 5).
These initial runs indicated that the streamflow and tracer
response of most of the catchment-storm pairs (10 out of
13) were well fit by all models, with the best fit of any of
the models yielding a mean NS (Q, d18O) > 0.85, our
behavioral threshold. However, there were three catch-
ment-rainstorm pairs (AW-8, AW-11, and SB-8) where
model 1 with a constant fraction of effective precipitation
routed as event water ( f ) and a single reservoir for event
and preevent water routing were rejected as nonbehavioral

Figure 5. Best mean Nash-Sutcliffe (Q, d18O) for four models and 13 catchment-storm pairs. Catchment-
storm pairs identified by catchment acronym (e.g., LK) and storm number (e.g., 8) as shown in Table 1.
The behavioral threshold (mean NS > 0.85) is displayed a thick line.

W07502 SEGURA ET AL.: RELATIONSHIPS FOR EVENT WATER AND RESIDENCE TIME W07502

9 of 21



(i.e., NS < 0.85) (Figures 5). Model 2, also with a single
reservoir for event and preevent water routing but with
variable f, was inadequate (i.e., NS < 0.85) in two of the
mentioned cases (AW-11 and SB-8). Figures 6 and 7 pres-
ent observations and all behavioral solutions for two of
these three cases. In Figure 6, visual inspection of the time
series of observed and predicted streamflow and d18O com-
positions for catchment-storm pair SB-8 indicates that
models 1 and 2 provided a poor fit to both streamflow and
d18O (Figures 6 and 7, left). These two models did not pro-
duce any behavioral sets of parameters (Figure 6 presents
the best 100 simulations for these 2 models). Only the mod-
els with two reservoirs in parallel for each event and pree-
vent water (Models 3 and 4) are able to capture the
streamflow and d18O tracer response during the recession
limb of the storm hydrograph (Figures 6 and 7, bottom
right). The fits of the 4 models to the data in AW-8 (not
shown here for brevity) displayed a very similar situation
with model 1 failing to reproduce the response of both
streamflow and d18O. For catchment-storm pair AW-11
(Figure 7) models 1 and 2 with a single reservoir each for
event and preevent water routing cannot capture the double
peak of streamflow (Figure 7, top left, where best 100 sim-
ulations are shown) while models 3 and 4 can (Figure 7,
top right). In all these catchment-storm pairs, a fast and
slow reservoir for both event and preevent water (4 reser-
voirs) provided a better performing model. It is interesting
to note that these three catchment-storm pairs where Mod-
els 1 and 2 performed poorly correspond to the smaller (7–
11 ha) catchments.

[28] We evaluated model parsimony for these 13 catch-
ment-storm pairs using the AIC [Akaike, 1974] with the �2

statistic as a measure of likelihood (equation (12) and (13),
Table 3). Model 3 was the best for 12 of the 13 catchment-
storm pairs and model 1 was best for the remaining one.

This analysis also indicated that model 4 with time-variable
f (fraction of effective rainfall routed as event water) did not
provide a superior fit to model 3 with constant f (Table 3)
for any catchment-storm pairs. Models 1 and 2 had similar
ranking positions for most catchment-storm pairs. Based on
these preliminary results only model 3 was considered for the
remaining 10 catchment-storm pairs. This model is therefore
the only model included in the discussion of parameter identi-
fication and comparison across all rainstorms and catchments.

[29] Model results using model 3 for all catchment-storm
pairs are presented in Tables 4 and 5. The best mean NS
(Q, d18O) for the 23 catchment-rainstorm pairs varied
between 0.87 and 0.98 (Table 4). In most cases (17 out 23)
NS for streamflow was higher than for d18O (Table 4). The
range of behavioral parameter values (5th, 50th, 95th and best
value) for each catchment storm-pair is presented in Table 5.

4.2. Model 3 Parameter Identification

[30] We evaluated the identification of behavioral and
best model parameters using the GLUE methodology
[Freer et al., 1996] for all model 3 runs (Table 6). Dotty
plots of model 3 parameters (illustrating individual NS for
Q and d18O and mean NS for each model parameter)
showed similar parameter identification for all catchment-
storm pairs (Table 6), illustrated here by catchment-storm
pair SB-8 (Figure 8). Similar to the findings of Weiler et al.
[2003], best parameters values of s0, and w (equation (2))
of the effective rainfall module s(t) were not well defined
for any catchment-storm pair due to weak sensitivity of the
mean objective function to changes in parameter values.
Similar behavior was observed for streamflow and d18O
individually. This is shown in Figure 8 by the relatively
uniform upper limits for mean NS (Q and d18O) and indi-
vidual lines for best Q and d18O, respectively. The measure
of identification (MI, i.e., ratio of behavioral parameter

Figure 6. SB-8 catchment-storm pair comparison between observed values of streamflow (Q) and
d18O compositions (symbols) and predictions (gray lines) for each model structure. For models 1 and 2
the best 100 runs are presented in the absence of behavioral solutions (see Figure 5). For models 3 and 4
all behavioral runs are shown.
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range to initial parameter range) of s0 was always above
51.5% with a mean of 87.1% (Table 6). For w the identifi-
cation was also poor with only 3 out of 23 cases having MI
below 35% (Table 6). Parameter f (Figure 8c) that defines
the fraction of effective rainfall routed as event water was
consistently well defined for all catchment-rainstorm pairs
(with MI below 35% in all cases and an average of 16.2%).
This parameter is especially well defined for d18O (Figure
8). Best f values varied between 0.19 and 0.77 (Table 6) indi-
cating that for all catchment-storm pairs there are both event
and preevent water components to stormflow. Some of the
parameters that define the event and preevent transfer func-
tions were well identified. The mean fast reservoir transit
time of event (kfe) and preevent water (kfp) were both well
defined, kfe is well defined in all 23 cases whereas kfp is well
defined in 22 (see Table 6). These two parameters, kfe and kfp

varied between 0.32–2.61 h, and 0.04–6.1 h, respectively,

with no significant difference them (p ¼ 0.24) (Tables 5 and
6 and Figure 8, for SB-8 example). Conversely, neither slow
transit times of event (kse) and preevent water (ksp) are well
defined (note the log scale on kse and ksp axes in Figure 8),
which could be the result of short simulation times focused
on a single hydrograph recession [Weiler et al., 2003].

Figure 7. AW-11 catchment-storm pair comparison between observed values of streamflow (Q) and
d18O compositions (symbols) and predictions (gray lines) for each model structure. For models 1 and 2
the best 100 runs are presented in the absence of behavioral solutions (see Figure 5). For models 3 and 4
all behavioral runs are shown.

Table 3. Model Ranking of AIC Test for 13 Catchment-Storm
Pairs Included in Preliminary Model Evaluation

Catchment-Storm Pair Model 1 Model 2 Model 3 Model 4

LK-8 4 3 1 2
LK-10 4 3 1 2
LK-11 3 2 1 4
LK-1 4 3 1 2
EF-8 3 2 1 4
PW-8 3 4 1 2
SC-8 4 3 1 2
SC-10 4 3 1 2
AW-8 3 4 1 2
AW-10 1 3 2 4
AW-11 3 2 1 4
AW-1 4 3 1 2
SB-8 3 4 1 2

Table 4. Nash-Sutcliff Model Performance for All 23 Catchment-
Storm Pairs for Model 3

Catchment-
Storm Pair

Number of
Behavioral

Models

Best NSa

Q d18O
Average
(Q, d18O)

LK-8 6906 0.885 0.852 0.868
LK-10 8576 0.973 0.971 0.972
LK-11 4648 0.891 0.929 0.910
LK-1 11,273 0.952 0.914 0.933
EF-8 11,636 0.940 0.897 0.919
EF-10 9708 0.981 0.894 0.938
EF-11 1028 0.912 0.867 0.890
PW-8 25,546 0.973 0.939 0.956
PW-10 16,007 0.974 0.910 0.942
PW-11 1044 0.863 0.929 0.896
SC-8 5704 0.954 0.953 0.954
SC-10 1288 0.971 0.888 0.930
SC-11 1484 0.973 0.914 0.944
SC-1 7292 0.969 0.940 0.954
YV-8 2011 0.989 0.969 0.979
YV-1 1053 0.914 0.942 0.928
VC-8 4456 0.967 0.933 0.950
VC-10 14,403 0.938 0.955 0.947
AW-8 1010 0.885 0.987 0.936
AW-10 1118 0.936 0.902 0.919
AW-11 3771 0.912 0.945 0.928
AW-1 1111 0.889 0.854 0.872
SB-8 1062 0.884 0.916 0.900

aTotal streamflow, Q ; tracer composition, d18O; average of Q and d18O.
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However, the dotty plots of these two parameters do indicate that kse and ksp values are at least 1 order of magnitude larger

Table 5. Percentiles and Best Parameters Values for at Least 1000 Behavioral Parameter Sets for 23 Catchment-Storm Pairsa

Parameter

STORM 1 STORM 8 STORM 10 STORM 11

5% 50% 95% Best 5% 50% 95% Best 5% 50% 95% Best 5% 50% 95% Best

SB
s0 0.04 0.40 0.92 0.05
W 4.67 21.02 37.58 16.67
F 0.28 0.33 0.39 0.33
qe 0.26 0.50 0.68 0.50
kfe 0.44 0.59 0.78 0.50
kse 5.51 22.45 94.4 14.69
qep 0.18 0.65 0.95 0.20
kfp 0.80 1.54 2.10 0.60
ksp 2.08 9.84 102.0 3.60

AW
s0 0.01 0.19 0.84 0.00 0.01 0.14 0.95 0.75 0.06 0.54 0.95 0.61 0.10 0.58 0.96 0.69
w 0.50 0.59 0.66 0.48 0.39 0.58 20.49 2.12 0.67 1.29 3.26 1.55 3.92 20.65 37.99 33.63
f 0.76 0.83 0.91 0.77 0.14 0.20 0.38 0.29 0.49 0.55 0.62 0.52 0.19 0.23 0.31 0.28
qe 0.13 0.57 0.92 0.97 0.14 0.42 0.91 0.28 0.29 0.70 0.95 0.82 0.17 0.43 0.89 0.36
kfe 0.29 0.61 0.74 0.72 0.19 0.50 0.94 0.35 0.25 0.48 0.77 0.45 0.22 0.57 0.94 0.32
kse 0.78 6.42 76.9 16.07 0.89 10.59 41.9 16.42 0.85 11.10 101.9 7.14 1.03 9.01 91.0 6.66
qep 0.05 0.49 0.95 0.68 0.03 0.12 0.41 0.07 0.14 0.50 0.94 0.37 0.08 0.22 0.37 0.13
kfp 3.93 24.97 47.6 24.75 0.06 0.51 2.79 0.11 0.12 0.40 0.88 0.15 0.20 0.31 0.43 0.23
ksp 12.80 55.8 114.4 29.5 5.77 11.38 41.2 5.89 0.64 8.00 90.1 3.43 4.51 16.63 88.1 41.3

VC
s0 0.03 0.40 0.92 0.05 0.04 0.44 0.93 0.00
w 3.66 21.06 38.33 14.63 4.01 21.56 38.16 33.13
f 0.42 0.54 0.66 0.55 0.34 0.43 0.53 0.42
qe 0.17 0.69 0.97 0.93 0.18 0.70 0.97 0.93
kfe 0.63 1.04 1.52 1.04 0.37 0.80 1.32 0.94
kse 1.17 10.11 105.3 7.07 0.92 6.73 100.2 5.56
qep 0.15 0.64 0.97 0.11 0.11 0.59 0.96 0.19
kfp 0.26 1.15 2.46 1.12 1.40 4.39 10.49 2.69
ksp 1.07 8.81 101.5 1.20 4.35 20.71 105.4 73.9

YV
s0 0.05 0.49 0.95 0.35 0.01 0.13 0.94 0.07
w 1.61 17.49 37.52 11.60 0.39 0.61 30.24 0.46
f 0.26 0.31 0.36 0.32 0.30 0.38 0.49 0.42
qe 0.21 0.78 0.97 0.50 0.16 0.52 0.92 0.37
kfe 0.45 0.70 0.93 0.59 0.08 0.55 1.38 0.77
kse 0.78 9.89 105.8 66.2 0.87 4.01 39.5 49.3
qep 0.12 0.60 0.96 0.50 0.11 0.47 0.94 0.37
kfp 0.44 1.08 1.55 0.71 0.05 0.44 1.64 0.38
ksp 1.41 8.54 94.5 11.74 0.78 2.86 37.5 1.75

SC
s0 0.05 0.49 0.95 0.16 0.09 0.63 0.96 0.04 0.07 0.56 0.95 0.12 0.04 0.50 0.95 0.20
w 2.42 19.94 38.02 25.94 0.80 13.97 37.37 0.53 1.05 14.60 36.98 1.55 0.60 1.29 3.55 1.21
f 0.23 0.32 0.42 0.31 0.30 0.41 0.60 0.36 0.36 0.46 0.63 0.52 0.29 0.41 0.64 0.40
qe 0.18 0.64 0.97 0.75 0.14 0.36 0.71 0.45 0.19 0.53 0.92 0.46 0.13 0.58 0.95 0.81
kfe 0.55 0.93 1.41 1.14 0.08 0.33 0.66 0.52 0.27 0.72 1.16 0.55 0.09 0.29 0.46 0.34
kse 1.02 14.84 104.8 61.0 1.03 5.26 35.8 1.78 1.20 6.25 41.7 23.45 0.34 14.61 101.5 35.5
qep 0.10 0.50 0.95 0.14 0.11 0.56 0.96 0.95 0.11 0.53 0.95 0.20 0.07 0.33 0.85 0.06
kfp 1.47 4.49 9.71 0.76 1.31 4.37 12.40 6.11 1.12 4.29 10.57 1.76 0.03 0.23 0.43 0.04
ksp 5.63 23.43 107.4 14.58 4.29 21.51 106.0 19.54 4.88 24.43 104.0 76.5 0.44 9.90 83.0 10.58

PW
s0 0.06 0.53 0.96 0.17 0.03 0.44 0.94 0.30 0.14 0.60 0.95 0.48
w 2.04 19.59 37.89 19.85 1.64 17.39 37.56 3.14 8.32 24.71 38.24 24.27
f 0.22 0.30 0.38 0.34 0.47 0.55 0.64 0.60 0.17 0.19 0.22 0.19
qe 0.16 0.62 0.96 0.48 0.13 0.69 0.97 0.53 0.10 0.72 0.97 0.70
kfe 0.51 1.36 2.41 1.44 0.23 0.80 1.44 0.32 1.18 1.98 2.62 1.97
kse 1.52 10.22 102.0 49.8 1.02 2.07 37.7 1.91 2.16 12.06 106.1 83.0
qep 0.12 0.58 0.96 0.36 0.11 0.55 0.95 0.62 0.14 0.49 0.93 0.33
kfp 1.56 3.85 6.93 2.02 0.49 1.63 3.17 1.32 1.03 2.10 2.95 1.01
ksp 4.32 19.95 106.3 35.4 1.82 8.72 42.5 9.01 3.22 16.55 104.7 10.26

Table 5. Continued
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than the mean fast transit time (kfe and kfp). The fraction of
event (qe) or preevent water (qp) routed through the fast res-
ervoir were not well defined in the majority of catchment-
rainstorm pairs (Table 6).

[31] The best parameter value and its degree of identifi-
cation depend on the objective function selected [Son and
Sivapalan, 2007], in this case, the mean NS (Q, d18O) giv-
ing equal importance to the fit of streamflow and d18O. The
NS calculated solely based on streamflow or d18O were
examined for sensitivity of results to this selection (dark
and light lines, respectively, in Figure 8 for SB-8 example).
For SB-8 the best values of parameters f and kfe are similar
when identified by either streamflow or d18O. For parame-
ter kfp best parameter values differ depending on which of
the two objective functions is used. In this example the best
value of kfp based on Q is �0.5 h; �7.3 h when based on
d18O alone, and �1.5 h when both objective functions are

considered. This indicates that a model based solely on
streamflow or d18O would lack important information
gained only when both objective functions are incorpo-
rated. Close analysis of the dotty plots and measure of iden-
tification (MI) of all 23 rainstorms revealed that in the 3
instances (Table 6) where w was well defined by the mean
NS it was also well defined by streamflow and d18O alone,
but in one of these cases the two objective functions were
not in agreement. f was defined based on both d18O and
streamflow and both measures were in agreement, however
the MI for d18O was considerably lower (between 4 and
30) than for streamflow (between 7 and 43), indicating that
d18O was able to constrain the parameter space in a higher
degree than streamflow in most catchment-storm pairs
(87%). Parameter kfe was well defined by both objective
functions in all catchment-storm pairs and both objective
functions were in agreement. The MI of both objective func-
tions was very similar and varied between 0.6 and 10.
Finally kfp was well defined by both objective functions in
all cases except for AW-1 where neither was able to con-
strain the parameter and in SC-1 where neither streamflow
nor d18O constrain the parameter space. In all cases both
objective functions were in agreement and in 89% of the
catchment-storm pairs streamflow gave a higher constrain of
the parameter space than d18O.

4.3. Patterns of Parameter Variability Across
Catchment-Storm Pairs

[32] Model parameters showed significant differences
for the 23 catchment-storm pairs that represent variability
in catchment response in both space and time. To further
investigate this variability, the three consistently well-iden-
tified model parameters (f, kfe, and kfp) were evaluated as a
function of catchment area, rainstorm size, and intensity
and antecedent moisture conditions (i.e., antecedent precip-
itation index for 7, 14, and 25 days). This evaluation was

Table 5. (continued)

Parameter

STORM 1 STORM 8 STORM 10 STORM 11

5% 50% 95% Best 5% 50% 95% Best 5% 50% 95% Best 5% 50% 95% Best

EF
s0 0.07 0.55 0.96 0.69 0.09 0.52 0.94 0.21 0.03 0.34 0.91 0.05
w 2.73 20.27 37.82 30.70 4.64 21.45 38.25 18.47 5.61 20.07 37.36 33.47
f 0.25 0.30 0.35 0.30 0.46 0.53 0.60 0.47 0.18 0.20 0.22 0.21
qe 0.19 0.68 0.97 0.74 0.16 0.69 0.97 0.68 0.22 0.61 0.94 0.50
kfe 1.20 1.84 2.58 1.81 0.75 1.38 1.89 1.23 1.46 2.00 2.52 1.62
kse 2.08 13.35 103.8 6.59 1.59 8.84 103.7 95.6 2.42 19.23 104.7 22.33
qep 0.12 0.58 0.96 0.38 0.11 0.56 0.96 0.16 0.14 0.63 0.96 0.51
kfp 1.31 3.17 5.22 1.48 0.65 2.17 4.71 0.09 2.15 4.01 5.29 3.53
ksp 3.65 17.52 104.0 9.56 2.42 16.44 104.7 26.4 4.51 21.80 108.0 124.7

LK
s0 0.06 0.60 0.97 1.00 0.47 0.83 0.99 0.90 0.07 0.54 0.96 0.11 0.04 0.42 0.93 0.00
w 4.88 25.76 38.67 29.67 5.55 22.56 38.16 28.10 2.81 20.39 38.02 15.01 4.91 21.48 38.14 23.23
f 0.38 0.47 0.55 0.51 0.28 0.32 0.36 0.33 0.43 0.54 0.67 0.52 0.19 0.24 0.28 0.23
qe 0.19 0.60 0.95 0.22 0.26 0.70 0.96 0.72 0.13 0.71 0.97 0.86 0.14 0.61 0.96 0.32
kfe 1.16 2.14 3.35 1.48 2.05 2.49 2.95 2.61 0.91 1.71 2.66 1.45 1.80 3.30 4.99 2.54
kse 2.75 20.07 106.0 119.9 2.85 26.8 110.7 35.0 1.88 8.75 101.8 24.53 3.68 17.90 106.8 87.5
qep 0.15 0.59 0.95 0.45 0.02 0.09 0.19 0.11 0.13 0.60 0.96 0.38 0.16 0.59 0.96 0.42
kfp 1.03 2.43 3.93 1.36 0.15 0.52 0.90 0.64 0.60 2.48 6.06 0.70 1.33 2.86 3.98 2.19
ksp 2.84 16.87 104.5 16.52 3.76 5.47 9.61 4.78 2.43 14.52 103.0 19.61 3.52 17.16 106.2 15.19

aWell identified parameters appear in bold. Empty cells indicate storms not included or available for analysis. Parameters Units as in Table 2.

Table 6. Model 3 Parameter Ranges for All Catchment-Storm
Pairs and Relative Parameter Identificationa

Parameter
Initial
Range

Range of
Best Values

Identification
Measure (MI)b

No. Storms
Sith MI< 35%

s0 (fraction) 0–1 0.00–1.00 87.1 (8.3) 0
w (15 min time

steps)
0–40 0.46–33.6 73.0 (28.5) 3

F (fraction) 0–1 0.19–0.77 16.2 (7.9) 23
qe (fraction) 0–1 0.22–0.97 75.3 (9.7) 0
Kfe (h) 0–50 0.32–2.61 2.2 (1.3) 23
kse (h) 0–125 1.78–119.9 65.9 (10.1) 0
qp (fraction) 0–1 0.06–0.95 75.5 (19.3) 2
Kfp (h) 0–50 0.04–6.11b 10.8 (17.8) 22
ksp (h) 0–125 1.20–124.74 54.5 (14.9) 2

aThe measure of identification (MI) corresponds to the average percent
of initial parameter space covered between the 5th and 95th percentile of
behavioral simulations (standard deviations in parenthesis).

bExcluding AW-1 because it is the only catchment-storm pair with this
time constant not well identified.
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performed using Pearson correlation for both best and con-
volved values. The convolved distributions of well identi-
fied parameters with respect to catchment and storm are
presented in Tables 7 and 8, respectively. The fraction of
effective rainfall routed as event water ( f ) was observed to
increase with rainstorm size (Figure 9a and 9b, Table 9).
This indicates that a larger fraction of the effective rainfall
is routed to the stream during large rainstorms compared to
small rainstorms. These correlations between storm size
and f are significant for both for best values (r ¼ 0.64, p ¼
0.001, Table 9) and convolved values (r ¼ 0.95, p ¼ 0.04,
Table 9), and similar to that found by James and Roulet
[2009] between the total % event water contributions and
rainstorm size (r ¼ 0.68, p < 0.001) as generated using
traditional IHS. The best f values were also positively
correlated to average and maximum rainstorm intensity
(mm/15 min) (r¼ 0.42 to 0.46, p ¼ 0.029 to 0.047, Table 9),
generating higher fractions of event water with greater inten-
sity. The fraction of effective rainfall routed as event water is
similar across catchment sizes (Figures 10a and 10b) indicat-
ing that for these 23 catchment-storm pairs f appears to be
scale-independent. The total percent of event water contribu-
tions per catchment-storm pair simulated by model 3 were in

agreement with those found from the IHS analysis [James
and Roulet, 2009] and varied between 7.8 6 3.8% and
45.7 6 1.8% (0.002 6 0.00004 and 0.49 6 0.039 mm). As
reported by James and Roulet [2009], there is a weak posi-
tive correlation between catchment area and total event water
(in millimeters) for the largest rainstorms that indicate
increasing magnitudes of event water delivered with increas-
ing catchment size. This may be due to a variety of mecha-
nisms (increased surface overland flow, return flow, direct
precipitation on larger stream reaches in valley-bottom areas)
with the shift from zero and first-order streams to a larger
downstream network [Gomi et al., 2002] even within the
150 ha Westcreek watershed of MSH. However, these corre-
lations are not statistically significant and a larger catchment-
storm sample would be required to confirm their validity.

[33] We found that there are positive correlations between
storm size and average storm intensity and percent event
water (r ¼ 0.60 to 0.86, p < 0.002, Table 9) and total event
water in millimeters (r ¼ 0.55 to 0.68, p ¼ 0.004 to 0.006,
Table 9) indicating that larger and more intense storms pro-
duce higher percent and amounts of new water.

[34] There is some evidence for decreasing mean transit
time of the fast reservoir of event water (kfe) with rainstorm

Figure 8. Dotty plots of model 3 parameters for catchment-storm pair SB-8. Note that they axis starts
at the behavioral threshold (mean NS ¼ 0.85). There are 1062 behavioral runs for this catchment-storm
pair. The thick line represents the maximum NS for streamflow (Q) alone and the lighter line, the maxi-
mum NS for d18O alone. Each dot represents the mean NS (Q and d18O) for one behavioral run.
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size (Figures 9c and 9d) for some of the catchments (LK,
PW, EF, YV, and VC). Such behavior is probably due to
increased connectivity (i.e., activation of more flowpaths)
under wetter conditions. This correlation is marginally
statistically significant for the best values of LK (r ¼ 0.89,
p ¼ 0.1) and PW (r ¼ 0.99, p ¼ 0.06) and should be con-
firmed with a larger sample. There were two catchments
(AW and SC) where kfe is almost constant among all storms
except for storm 1. kfe also decreases with average storm
intensity for the same catchments (LK, EF, PW, YV and
VC) but this relationship (not shown here for brevity) is
only marginally significant at the PW catchment (r ¼ 0.99,
p ¼ 0.08). We tested for effects of the sampling resolution
of streamflow and d18O and found it had no bearing on
transit time of event water. Results show a positive correla-

tion between best and convolved values of kfe and catchment
area (r ¼ 0.78 � 0.94 p � 0.0005, Figures 10c and 10d,
Table 9). For larger catchment areas CA > 30 ha, kfe is a
strong function of catchment area (kfe ¼ 1.23�ln(CA)-3.8)
(Figure 10d). This fit has a �2 of 0.1698 (p ¼ 0.0177). At
smaller catchment areas the correlation is lost, and a constant
value of kfe � 40 min gives a better description to the data.
One possible explanation for this behavior is that there are
two underlying processes controlling the mean transit time.
One process scales with the catchment area while the second
does not. If the value of kfe is the sum of the transit times set
by the two processes, small catchments are dominated by the
constant transit time, while the transit time that depends on
the CA dominates larger catchments. The equation that
describes the relation between CA and kfe (Figure 10d) can
also be written as kfe ¼ 0.021�(CA)0.95. The exponent is close
to one and indicates that the travel time of event water grows
in direct proportion to catchment area for basins above 30 ha.

[35] Finally, no significant trends were observed between
the variation of the fast transit time of preevent water (kfp) and
rainstorm size, intensity, or catchment area (Figures 9 and 10
and Table 9). There is a weak positive correlation between
the convolved values of kfp and storm size (Figure 9f, r ¼
0.93 p ¼ 0.07) that indicates that as the storms size increases
the time constant of preevent fast reservoir increases.

5. Discussion
5.1. Comparison of Model Performance

[36] In this paper a conceptual model structure that
incorporates the unit hydrograph and IHS methodologies
was used to model storm-based streamflow and stable iso-
tope tracer response from a series of forested catchments.
Four versions of the model with increasing complexity
were considered, ranging from the simplest (5 free parame-
ters) with constant fraction of effective rainfall routed as
event water ( f ) and a single-reservoir routing for event and
preevent water, to the most complex (10 free parameters),
with variable f and two parallel reservoirs routing for event
and preevent water. Results indicated that a model structure
with intermediate complexity and 9 free parameters was
adequate in all 23 catchment-storm pairs modeled. The
resulting model (model 3) was simple in terms of a constant
fraction of effective rainfall routed as event water but
retained the two linear parallel reservoirs for event and pre-
event water. The 4-reservoir structure (i.e., two parallel lin-
ear reservoirs, for each event and preevent water) was also
found to be the most efficient in other conceptual model
applications that incorporate tracer data [Weiler et al.,
2003; Iorgulescu et al., 2005; McGuire and McDonnell,
2006; Iorgulescu et al., 2007; Johnson et al., 2007;
Hrachowitz et al., 2009]. Interestingly, in this study, the
simplest model with just one reservoir gave an adequate
result for most catchment-storm pairs. However, 3 catch-
ment-storm pairs out of 13 located in the smallest catch-
ments required an additional reservoir with a distinct mean
transit time in order to meet the behavioral threshold of
mean NS equal to 0.85. Addition of this model complexity
was a direct result of including the d18O data set; the reces-
sion of d18O compositions illustrated the need for a fast and
slow reservoir of event and preevent water for these catch-
ment-storm pairs. The constant event water routing fraction

Table 7. Percentiles and Best Values of Convolved Distributions
of Parameters With Identification Measure (MI) < 35% With
Respect to Catchment

Catchment Parameter 5% 50% 95% Best

SBa f (fraction) 0.28 0.33 0.39 0.33
SBa kfe (h) 0.44 0.59 0.78 0.50
SBa kfp (h) 0.80 1.54 2.10 0.60
AW f (fraction) 0.37 0.41 0.46 0.40
AW kfe (h) 0.39 0.53 0.68 0.53
AWb kfp (h) 0.21 0.54 1.20 0.29
VC f (fraction) 0.41 0.49 0.57 0.48
VC kfe (h) 0.63 0.94 1.27 0.91
VC kfp (h) 1.26 2.90 5.98 2.33
YV f (fraction) 0.30 0.35 0.41 0.34
YV kfe (h) 0.37 0.63 1.06 0.62
YV kfp (h) 0.36 0.78 1.41 0.68
SC f (fraction) 0.35 0.41 0.49 0.40
SC kfe (h) 0.39 0.57 0.76 0.56
SC kfp (h) 1.94 3.58 6.16 3.17
PW f (fraction) 0.31 0.35 0.39 0.34
PW kfe (h) 0.94 1.40 1.85 1.38
PW kfp (h) 1.60 2.55 3.70 2.44
EF f (fraction) 0.31 0.34 0.37 0.34
EF kfe (h) 1.39 1.74 2.09 1.73
EF kfp (h) 2.11 3.14 4.27 3.08
LK f (fraction) 0.34 0.37 0.41 0.37
LK kfe (h) 1.99 2.43 2.88 2.39
LK kfp (h) 1.17 1.76 2.55 1.66

aSame as SB-8 because there was only one storm in the SB catchment.
bThe convolution does not include Storm 1 because its identification

measure was above 80%.

Table 8. Percentiles and Best Values of Convolved Distributions
of Parameters With Identification Measure (MI) < 35% With
Respect to Storm

Storm Parameter 5% 50% 95% Best

1 f 0.44 0.48 0.52 0.48
1 kfe (h) 0.80 1.09 1.42 1.05
1 kfp (h) 1.52 2.68 4.46 2.41
8 f 0.32 0.35 0.39 0.35
8 kfe (h) 0.90 1.09 1.29 1.08
8 kfp (h) 1.34 1.99 3.06 1.84
10 f 0.47 0.51 0.55 0.51
10 kfe (h) 0.75 0.98 1.22 0.97
10 kfp (h) 1.64 2.70 4.21 2.49
11 f 0.22 0.26 0.30 0.25
11 kfe (h) 1.23 1.61 2.00 1.59
11 kfp (h) 1.34 1.84 2.27 1.85
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Figure 9. Relationships between storm size and the three identifiable parameters ((a and b) fraction of
effective rainfall routed as event water, f ; (c and d) mean transit time of the fast reservoir of event water,
kfe ; and (e and f) mean transit time of the fast reservoir of preevent water, kfp). Figures 9a, 9c, and 9e
present best values per storm pair (n ¼ 23). Figures 9b, 9d, and 9f present convolved distribution of pa-
rameters per storm. The filled circle is the best value and the deviation bars include all possible values
between the 5th and 95th percentiles.

Table 9. Pearson Correlation Matrix of Catchment and Storm Characteristics Versus Best Parameters and Convolved Values of Well
Identified Parameters and Event Watera

Catchment/Storm
Characteristics

Parameters Event Water

f (n ¼ 23) f Convolved kfe (n ¼ 23) kfe Convolved kfp (n ¼ 22) kfp Convolved % mm

Catchment area (ha) �0.14 (0.517) �0.267 (0.52) 0.777 (<<0.00013) 0.94 (0.00053) 0.081 (0.72) 0.34 (0.41) �0.20 (0.35) 0.21 (0.34)
Storm size (mm) 0.64 (0.0010) 0.95 (0.049) �0.27 (0.21) �0.79 (0.20) �0.12 (0.59) 0.93 (0.071) 0.86 (<0.00010) 0.55 (0.0064)
AI (mm/15 min)b 0.42 (0.047) 0.54 (0.46) �0.21 (0.333) �0.60 (0.40) �0.030 (0.89) 0.42 (0.57) 0.60 (0.0023) 0.68 (0.0035)
Max.int

(mm/15 min) b
0.46 (0.029) 0.71 (0.28) �0.16 (0.474) �0.69 (0.30) �0.089 (0.69) 0.61 (0.38) 0.40 (0.06) 0.11 (0.62)

API7 (mm) �0.038 (0.86) �0.034 (0.96) �0.0086 (0.97) �0.43 (0.56) 0.11 (0.62) �0.37 (0.63) �0.18 (0.40) 0.30 (0.16)
API14 (mm) �0.066 (0.68) �0.084 (0.92) 0.0019 (0.99) �0.39 (0.61) 0.12 (0.60) �0.41 (0.58) �0.21 (0.33) 0.29 (0.18)
API25 (mm) � 0.044 (0.86) �0.0076 (0.99) 0.012 (0.96) �0.47 (0.67) �0.16 (0.51) 0.12 (0.40) �0.27 (0.27) 0.12 (0.61)

aP-values are given in parenthesis. Significant relationships (P < 0.05) are in bold.
bAI ¼ average storm intensity (mm/15 min); Max. int ¼ maximum storm intensity (mm/15 min).

W07502 SEGURA ET AL.: RELATIONSHIPS FOR EVENT WATER AND RESIDENCE TIME W07502

16 of 21



that we found adequate contrasts with the results of Weiler
et al. [2003], where the necessity of a varying fraction of
effective rainfall routed as event water was emphasized.
This difference in results may reflect a genuine difference
in the active processes of runoff generation in the two loca-
tions or may be due to the different characteristics of the
datasets used. While temporal variation in rainfall tracer
compositions were available to Weiler et al. [2003], only a
single spatially averaged throughfall tracer composition
(volume-weighted average of 15 throughfall collectors) per
rainstorm was available here.

5.2. Parameter Identification and Patterns of
Parameter Variability

[37] The parameters of the final model structure show
different degrees of identification. Parameters related to the

nonlinear module that transforms throughfall into effective
rainfall were poorly identified, whereas most of the param-
eters related to the routing section of the model were well
constrained. Among the well-constrained parameters, the
fraction of effective rainfall routed as event water ( f ) was
correlated to rainstorm size and intensity, and the mean
transit time of the fast reservoir of event water (kfe)was cor-
related to rainstorm size and catchment area. The mean
transit time of the fast reservoir preevent water (kfp), in con-
trast, did not display any correlation with rainstorm size
nor catchment size. The positive correlation between f and
rainstorm size is consistent with that found by James and
Roulet [2009], who analyzed the same data set with tradi-
tional IHS techniques. Our results are also consistent with
those of Brown et al. [1999] who observed strong depend-
ence between the mean maximum contribution of event

Figure 10. Relationships between catchment area and the three identifiable parameters ((a and b) frac-
tion of effective rainfall routed as event water, f ; (c and d) mean transit time of the fast reservoir of event
water, kfe ; and (e and f) mean transit time of the fast reservoir of preevent water, kfp). Figures 10a, 10c,
and 10e present best values per catchment pair (n ¼ 23). Figures 10b, 10d, and 10f present convolved
distribution of parameters per catchment. The filled circle is the best value than the deviation bars
include all possible values between the 5th and 95th percentiles.
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water and mean maximum throughfall intensity and magni-
tude for 5 rainstorms in small (<2 km2) forested catch-
ments in New York during dry conditions (r ¼ 0.69 to 0.96,
p ¼ 0.009 to 0.19) and Renshaw et al. [2003] who found a
strong correlation between storm size and percent old water
contribution (r ¼ 0.93, p < 0.0001) for a fourth-order
catchment (12 km2 ha) in Etna, NH.

[38] Existing studies present inconclusive results on the
trend of the fraction of effective rainfall routed as event
water with catchment size [Genereux and Hooper, 1998].
Here, we did not find any significant trend with catchment
area, in agreement with previous studies by McGlynn et al.
[2004] in the Maimai catchment (catchments areas between
0.09 and 280 ha), and Onda et al. [2006] in small (1.2–6.3
ha) steep Japanese catchments. However, others reported
relations between catchment size and event water contribu-
tion. Brown et al. [1999] found a negative correlation
between maximum new water contribution and catchment
area during 4 storm events in 7 forested New York catch-
ments (r ¼ 0.21 to 0.76, p ¼ 0.04 to 0.45). Shanley et al.
[2002], on the other hand, found weak positive correlations
between percent new water input and catchment area for
4 storm events in 3 forested Vermont catchments (r ¼ 0.55
to 0.82. p ¼ 0.38 to 0.62) for varying catchment area
(41–11,125 ha). More recently Laudon et al. [2007] found
positive significant relations between percent new water
input and catchment area for 13 Sweden boreal catchments
(4–6700 ha) during the peak and falling limb of the snow-
melt hydrograph (r ¼ 0.54, p ¼ 0.04 for both). The exis-
tence of a relation between percent event water contribution
and catchment size as well as its direction (negative or posi-
tive) appears to vary with each catchment and set of condi-
tions; site-specific studies themselves generate contrasting
results [Shanley et al., 2002; Laudon et al., 2007].

[39] The mean transit time for the fast event water reser-
voir, kfe, was found to be negatively correlated to rainstorm
size in most catchments, indicating that the event water from
larger rainstorms is routed faster than from smaller rain-
storms. This correlation is likely due to increased connectiv-
ity in the catchment as rainstorm size increases [Jencso
et al., 2009]. Some of this connectivity at MSH is occurring
in the shallow subsurface, as evidenced by strong correla-
tions between d18O and dissolved organic carbon concentra-
tions in stream water, indicating event water traveling
through a shallow subsurface flowpath, particularly for the
larger rainstorms during dry conditions [James and Roulet,
2009]. Previous studies at the hillslope scale have established
that subsurface flow depends on available soil macropores,
matrix and antecedent moisture conditions. Findings suggest
that the soil porevolume depends on antecedent hydrologic
conditions due to expansion of individual macropores with
surrounding soil and the lateral extension of macropore net-
works during wet conditions [Tsuboyama et al., 1994; Sidle
et al., 2000], however in our data AMC, only based on
precipitation metrics, were unrelated to mean transit times
(Table 9). This lack of correlation has to be taken with cau-
tion considering that only one of our four storms took place
during the wet conditions [James and Roulet, 2009]. More
recent studies have established that the subsurface flow is
related to pore pressure, groundwater level, subsurface satu-
rated area and permeability, especially during wet condi-
tions [Uchida et al., 2004]. In addition, others have found

that total pipe flow volume was highly controlled by the
total rainfall amount and the prestorm wetness [Uchida
et al., 2005]. This is in agreement with the decreasing trend
we found between kfe and storm size for most catchments.

[40] Transfer functions are known be nonstationary
[Hrachowitz et al., 2010; Rinaldo et al., 2011] and we
found evidence of such a behavior in the rainfall-runoff
response of the 23 catchment-storm pairs that we analyzed.
We found that the relative portion of event and preevent
water (f parameter) was not constant, either among catch-
ments or storms. Since the mean transfer times of event and
preevent water are different, a variation of their relative
fraction results in an overall variation of the transfer func-
tion for the total water. Analogous results were found in
previous studies. Iorgulescu et al. [2005, 2007] found non-
linear and nonstationary behavior of the contributions of
soil water and groundwater to storm response during a 5
week period for a 0.24 km2 forested catchment. They found
that relative contribution of the soil water and groundwater
components varies with wetness conditions (i.e., from the
wet to the dry seasons). For our data set, however, we did
not find any evidence of the nonstationary behavior of the
transfer function of event water (the transit time, kfe, is con-
stant across storms, see in Figures 9 and 10). Our results
confirm the nonstationary behavior of the combined contri-
butions of event and preevent water. The transfer function
of event water (kfe) is found to be stationary and its mean
transit time linearly dependent on catchment area (for
catchments above 30 ha).

[41] The correlation between kfe, and catchment size is
perhaps the most interesting of all (Figure 10d and Figure
11). It indicates that at MSH kfe increases with catchment
area for catchments between 30 and 150 ha. The magnitudes
of kfe at MSH are similar to other small headwater catchment
studies. Weiler et al. [2003] found a mean transit time of the
event water of 1.5 h for the Maimai basin (17 ha), Roa-Gar-
cia and Weiler [2010] found mean transit times of the event
water reservoir between 0.6 and 4.7 h for Andean catchments
of areas between 62 and 159 ha, while Lyon et al. [2008]
found a mean transit time of 4.5 h for a 880 ha catchment in
Arizona. These results are comparable to those of MSH, and
appear to emphasize a general trend of increasing kfe with
catchment area (Figure 11). This study provides an interest-
ing perspective on the scaling of the runoff generation proc-
esses in small headwater systems. We found that the small
catchments at MSH are those for which the highest degree of
model complexity was required, consistent with observations
of higher variability in streamflow, stream water chemistry,
relative contribution of groundwater, and pH for smaller sys-
tems [Wood et al., 1988; Woods et al., 1995; Wolock et al.,
1997; Bishop et al., 2008; Asano et al., 2009; Uchida and
Asano, 2010]. All these studies have found either asymptotic
or convergent patterns in the relations between catchment
area and runoff and infiltration [Wood et al., 1988; Woods
et al., 1995]; solute concentrations [Wolock et al., 1997;
Bishop et al., 2008; Asano et al., 2009], and the relative con-
tribution of bedrock [Uchida and Asano, 2010]. Here, we
also found a difference in behavior between ‘‘small’’ and
‘‘large’’. While for larger catchments we found a linear relation
between CA and kfe (Figure 11) and a model with a simpler
structure (i.e., Model 1) could describe the rainstorm-based
runoff generation in these larger catchments, this relation was
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absent in smaller catchments at MSH (i.e., 7–10 ha). These
results suggest that understanding and predicting the hydro-
logic behavior for a small catchment is a much more challeng-
ing task than for a larger catchment, where the properties of
the small building blocks are averaged out into a simpler
mean configuration [Bishop et al., 2008] with lesser degree of
variability and complexity. Future steps should consider
assembling studies of smaller catchments so that a collective
populating of Figure 11 may help shed light on the behavior
smaller systems.

6. Conclusion
[42] In this study catchment streamflow and d18O stable

isotope tracer response were modeled using a conceptual
model integrating the unit hydrograph and IHS methodolo-
gies. The model was applied across eight nested catchments
for four individual rainstorms, generating a usable data set
of 23 catchment-storm pairs. The data set spans variation
both in space (i.e., catchment area between 11 and 147 ha)
and time or environmental conditions (i.e., variable storm
of size, storm intensity, and antecedent moisture condi-
tions). Four model structures of varying complexity were
evaluated using the GLUE methodology. The most suc-
cessful model structure at replicating event-based stream-
flow and d18O included a constant fraction of effective
rainfall routed as event water and two linear reservoirs in
parallel for event and preevent water routing.

[43] We found that the fraction of effective rainfall
routed as event water was correlated to rainstorm size but
insensitive to catchment size indicating that this fraction is
constant in all catchments and controlled by other environ-
mental conditions such as storm intensity and size. The
mean transit time of event water, kfe, decreased with rain-
storm size indicating that increased connectivity during

strong rainstorm events decreased the mean travel time of
event water. This relation was consistent with the activation
of fast event water moving through the O-horizon under
large rainstorms. At MSH, kfe, is constant in the smallest
catchments but increased with catchment size for catch-
ments above 30 ha, indicating that travel time is larger for
larger catchments. Comparison with three other empirical
studies provides additional evidence of a general increasing
trend in kfe with catchment area. The relationships we found
between some model parameters and rainstorm characteris-
tics and catchments size constitute a step forward for the de-
velopment of a predictive model of catchment response.
Next steps include the application of this methodology to
different scenarios (i.e., other catchments with different
physiography) and conditions (i.e., different climates) to
investigate the strength of the relationships found here.

Notation

P Rainfall
Peff Effective rainfall
s(t) Antecedent rainfall index

s0 Initial value of s(t)
! Memory timescale parameter to compute s(t)
c Normalization constant to maintain the water

balance (�Peff ¼ �Q).
f Fraction of effective rainfall routed as event

water
f(t) Time varying fraction of effective rainfall

routed as event water
cf Free parameter to compute the f(t)
wf Memory timescale parameter to compute f (t)

he(�), hp(�) Transfer function. This can be either event
water (he(�)) or preevent water (hp(�))

Figure 11. Comparison between the meant transit time of the fast reservoir of event water (kfe) found
in this study (black circles) to the Maimai catchment [Weiler et al., 2003] (star symbol), Upper Sabino
catchment [Lyon et al., 2008] (square symbol), and Andean catchments [Roa-Garcia and Weiler, 2010]
(diamond symbols).
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ke, kp Mean transit time of a single linear reservoir.
This can be either event water (ke) or pree-
vent water (kp)

qe, qp Fraction of water routed into the fast reser-
voir of either the event (qe) or preevent (qp)
water

kfe, kfp Mean transit times of the fast reservoir. This
can be either event (kfe) or preevent (kfp)

kse, ksp Mean transit times of the slow reservoir.
This can be either event (kse) or preevent
(ksp)

g(�) Total runoff transfer function
Qe Event water contribution to streamflow
Qp Preevent water contribution to streamflow
C Tracer concentration

Cp Tracer composition in the preevent water
Ce Tracer composition of event water
Qb Base flow
Q Total stream flow
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